Difference between revisions of "2023 AMC 10A Problems/Problem 17"
(Replaced content with "==Solution==") (Tag: Replaced) |
|||
Line 1: | Line 1: | ||
+ | Let <math>ABCD</math> be a rectangle with <math>AB = 30</math> and <math>BC = 28</math>. Point <math>P</math> and <math>Q</math> lie on <math>\overlinesegment{BC}</math> and <math>\overlinesegment{CD}</math> respectively so that all sides of <math>\triangle{ABP}, \triangle{PCQ},</math> and <math>\triangle{QDA}</math> have integer lengths. What is the perimeter of <math>\triangle{APQ}</math>? | ||
+ | |||
+ | |||
+ | <math>\text{A) } 84 \qquad \text{B) } 86 \qquad \text{C) } 88 \qquad \text{D) } 90 \qquad \text{E) } 92</math> | ||
+ | |||
==Solution== | ==Solution== |
Revision as of 20:13, 9 November 2023
Let be a rectangle with and . Point and lie on $\overlinesegment{BC}$ (Error compiling LaTeX. Unknown error_msg) and $\overlinesegment{CD}$ (Error compiling LaTeX. Unknown error_msg) respectively so that all sides of and have integer lengths. What is the perimeter of ?