Difference between revisions of "Symmetric sum"

(I added the definition of symmetric sum notation.)
(See also)
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A '''symmetric sum''' is any sum in which any [[permutation]] of the variables leaves the sum unchanged.
+
The '''symmetric sum''' <math>\sum_{\rm sym} f(x_1, x_2, x_3, \dots, x_n)</math> of a function <math>f(x_1, x_2, x_3, \dots, x_n)</math> of <math>n</math> variables is defined to be <math>\sum_{\sigma} f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, \dots, x_{\sigma(n)})</math>, where <math>\sigma</math> ranges over all permutations of <math>(1, 2, 3, \dots, n)</math>.
  
One way to generate symmetric sums is using symmetric sum notation. If <math>f(x_1, x_2, x_3, \dots, x_n)</math> is a function of <math>n</math> variables then the symmetric sum <math>\sum_{sym} f(x_1, x_2, x_3, \dots, x_n) = \sum_{\sigma} f(x_{\sigma(1)}, {x_\sigma(2)}, {x_\sigma(3)}, \dots, x_{\sigma(n)})</math>, where <math>\sigma</math> ranges over all permutations of <math>(1, 2, 3, \dots, n)</math>.
+
More generally, a '''symmetric sum''' of <math>n</math> variables is a sum that is unchanged by any [[permutation]] of its variables.
  
All symmetric sums can be written as a polynomial of [[elementary symmetric sum]]s.  
+
Any symmetric sum can be written as a polynomial of [[elementary symmetric sum]]s.
 +
 
 +
A '''symmetric function''' of <math>n</math> variables is a function that is unchanged by any [[permutation]] of its variables. The symmetric sum of a symmetric function <math>f(x_1, x_2, x_3, \dots, x_n)</math> therefore satisfies <cmath>\sum_{\rm sym} f(x_1, x_2, x_3, \dots, x_n) = n!f(x_1, x_2, x_3, \dots, x_n).</cmath>
 +
 
 +
Given <math>n</math> variables <math>x_1,\ldots,x_n</math> and a symmetric function <math>f(x_1,\ldots,x_r)</math> with <math>r\leq n</math>, the notation <math>\sum_{\rm sym}f(x_1, x_2, x_3, \dots, x_r)</math> is sometimes used to denote the sum of <math>f(x_1,\ldots,x_r)</math> over all <math>\left(\begin{matrix}n\cr r\end{matrix}\right)</math> subsets of size <math>r</math> in <math>\{x_1,\ldots,x_n\}</math>.
  
 
== See also==
 
== See also==
 
*[[Cyclic sum]]
 
*[[Cyclic sum]]
*[[Muirhead's_Inequality]]
+
*[[Muirhead's Inequality]]
 
+
*[[PaperMath’s sum]]
 
{{stub}}
 
{{stub}}
  
[[Category:Elementary algebra]]
+
[[Category:Algebra]]
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 11:52, 8 October 2023

The symmetric sum $\sum_{\rm sym} f(x_1, x_2, x_3, \dots, x_n)$ of a function $f(x_1, x_2, x_3, \dots, x_n)$ of $n$ variables is defined to be $\sum_{\sigma} f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, \dots, x_{\sigma(n)})$, where $\sigma$ ranges over all permutations of $(1, 2, 3, \dots, n)$.

More generally, a symmetric sum of $n$ variables is a sum that is unchanged by any permutation of its variables.

Any symmetric sum can be written as a polynomial of elementary symmetric sums.

A symmetric function of $n$ variables is a function that is unchanged by any permutation of its variables. The symmetric sum of a symmetric function $f(x_1, x_2, x_3, \dots, x_n)$ therefore satisfies \[\sum_{\rm sym} f(x_1, x_2, x_3, \dots, x_n) = n!f(x_1, x_2, x_3, \dots, x_n).\]

Given $n$ variables $x_1,\ldots,x_n$ and a symmetric function $f(x_1,\ldots,x_r)$ with $r\leq n$, the notation $\sum_{\rm sym}f(x_1, x_2, x_3, \dots, x_r)$ is sometimes used to denote the sum of $f(x_1,\ldots,x_r)$ over all $\left(\begin{matrix}n\cr r\end{matrix}\right)$ subsets of size $r$ in $\{x_1,\ldots,x_n\}$.

See also

This article is a stub. Help us out by expanding it.