Difference between revisions of "2023 IOQM/Problem 2"

(Solution)
(Solution)
Line 4: Line 4:
 
<cmath>\lbrace(a.b)\in N: 2 \leq a,b \leq2023,\:\: \log_{a}{b}+6\log_{b}{a}=5\rbrace</cmath>
 
<cmath>\lbrace(a.b)\in N: 2 \leq a,b \leq2023,\:\: \log_{a}{b}+6\log_{b}{a}=5\rbrace</cmath>
  
==Solution==
+
==Solution quick==
<cmath>\lbrace(a.b)\in N: 2 \leq a,b \leq2023,\:\: \log_{a}{b}+6\log_{b}{a}=5\rbra</cmath>ce<cmath>
+
 
</cmath>assume \log_{a}{b}=x\$$
+
<math></math>assume \log_{a}{b}=x\$$
 +
Then,
 +
\begin{align*}
 +
x + 5/x &= 6 & \text{because log} \\
 +
x^2 + 5 &= 6x & \text{by such-and-such}
 +
\end{align*}
 +
 
 +
So, x equals to 2 or 3
 +
 
 +
For 2, it's obvious that there are {2,4}...{44,1936}
 +
 
 +
For 3, it's obvious that there are {2,8}...{12,1728}
 +
 
 +
Thus, there are 43+11=53 pairs

Revision as of 09:57, 2 October 2023

Problem

Find the number of elements in the set

\[\lbrace(a.b)\in N: 2 \leq a,b \leq2023,\:\: \log_{a}{b}+6\log_{b}{a}=5\rbrace\]

Solution quick

$$ (Error compiling LaTeX. Unknown error_msg)assume \log_{a}{b}=x$$ Then, \begin{align*} x + 5/x &= 6 & \text{because log} \\ x^2 + 5 &= 6x & \text{by such-and-such} \end{align*}

So, x equals to 2 or 3

For 2, it's obvious that there are {2,4}...{44,1936}

For 3, it's obvious that there are {2,8}...{12,1728}

Thus, there are 43+11=53 pairs