Difference between revisions of "2023 USAMO Problems/Problem 6"
m (→Solution 1) |
(→Solution 1) |
||
Line 192: | Line 192: | ||
</asy> | </asy> | ||
− | Let line <math>\overline{E'J}</math> intersect the circumcircle of <math>\triangle{}DII_A</math> at <math>G</math> and <math>J'</math>. Notice that <math>J</math> is the midpoint of <math>\overline{II_A}</math> and <math>\angle{}IE'I_A=\angle{}IDI_A=\angle{}IJ'I_A</math>, so <math>IE'I_AJ'</math> is a parallelogram with center <math>J</math>, so <math>\tfrac | + | Let line <math>\overline{E'J}</math> intersect the circumcircle of <math>\triangle{}DII_A</math> at <math>G</math> and <math>J'</math>. Notice that <math>J</math> is the midpoint of <math>\overline{II_A}</math> and <math>\angle{}IE'I_A=\angle{}IDI_A=\angle{}IJ'I_A</math>, so <math>IE'I_AJ'</math> is a parallelogram with center <math>J</math>, so <math>\tfrac{EJ}{EJ'}=\tfrac{1}{2}</math>. Similarly, we get that if line <math>\overline{E'K}</math> intersects the circumcircle of <math>\triangle{}DI_BI_C</math> at <math>H</math> and <math>K'</math>, we have that <math>\tfrac{EK}{EK'}=\tfrac{1}{2}</math>, so <math>\overline{KJ}\parallel\overline{K'J'}</math>, so <math>\angle{}HGJ'=\angle{}HGJ=\angle{}HKJ=\angle{}HK'J'</math>, so <math>G,H,J',K'</math> are concyclic. Then, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}DI_BI_C,</math> and <math>GHJ'K'</math> are <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math>, so <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math> concur, so <math>\overline{DF},\overline{HK},</math> and <math>\overline{GJ}</math> concur, so <math>E=E'</math>. We are then done since <math>\angle{}BAE'=\angle{}CAD</math>. |
~Zhaom | ~Zhaom | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:43, 22 September 2023
Problem
Let ABC be a triangle with incenter and excenters , , opposite , , and , respectively. Given an arbitrary point on the circumcircle of that does not lie on any of the lines , , or , suppose the circumcircles of and intersect at two distinct points and . If is the intersection of lines and , prove that .
Solution 1
Consider points and such that the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with line are and , the intersections of the circumcircle of with line are and , the intersection of lines and is , and the intersection of lines and is .
Since is cyclic, the pairwise radical axes of the circumcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. Similarly, since is cyclic, the pairwise radical axes of the cirucmcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. This means that , so the tangents to the circumcircle of at and intersect on . Let this intersection be . Also, let the intersection of the tangents to the circumcircle of at and be a point at infinity on called and let the intersection of lines and be . Then, let the intersection of lines and be . By Pascal's Theorem on and , we get that and are collinear and that and are collinear, so and are collinear, meaning that lies on since both and lie on .
Consider the transformation which is the composition of an inversion centered at and a reflection over the angle bisector of that sends to and to . We claim that this sends to and to . It is sufficient to prove that if the transformation sends to , then is cyclic. Notice that since and . Therefore, we get that , so is cyclic, proving the claim. This means that .
We claim that . Construct to be the intersection of line and the circumcircle of and let and be the intersections of lines and with the circumcircle of . Since and are the reflections of and over , it is sufficient to prove that are concyclic. Since and concur and and are concyclic, we have that are concyclic, so , so are concyclic, proving the claim. We can similarly get that .
Let line intersect the circumcircle of at and . Notice that is the midpoint of and , so is a parallelogram with center , so . Similarly, we get that if line intersects the circumcircle of at and , we have that , so , so , so are concyclic. Then, the pairwise radical axes of the circumcircles of and are and , so and concur, so and concur, so . We are then done since .
~Zhaom
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.