Difference between revisions of "2017 AMC 8 Problems/Problem 22"

(Solution 6 (Basic Trignometry))
(Solution 6 (Basic Trignometry))
Line 82: Line 82:
 
</asy>
 
</asy>
  
Since <math>ODBC</math> is a kite, <math>DB=CB=5</math>, and <math>AB=13</math> due to the [[Pythagorean Theorem]]. This angle, <math>\angle{ODB}</math>, is a <math>90^\circ</math>, so <math>AD=AB-DB=13-5=8 \Rightarrow \tan \angle BAC = \frac{5}{12}=\frac{r}{8} \Rightarrow 12r=40 \Rightarrow r= \frac{40}{12}= \boxed{\textbf{(D)}\ \frac{10}{3}}</math>
+
Since <math>ODBC</math> is a kite, <math>DB=CB=5</math>, and <math>AB=13</math> due to the [[Pythagorean Theorem]]. This angle, <math>\angle{ODB}</math>, is <math>90^\circ</math>, so <math>AD=AB-DB=13-5=8 \Rightarrow \tan \angle BAC = \frac{5}{12}=\frac{r}{8} \Rightarrow 12r=40 \Rightarrow r= \frac{40}{12}= \boxed{\textbf{(D)}\ \frac{10}{3}}</math>
  
 
~[[User:PowerQualimit|PowerQualimit]]
 
~[[User:PowerQualimit|PowerQualimit]]

Revision as of 21:00, 17 September 2023

Problem

In the right triangle $ABC$, $AC=12$, $BC=5$, and angle $C$ is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?

[asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E);[/asy]

$\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}$

Solution 1

We can reflect triangle $ABC$ over line $AC.$ This forms the triangle $AB'C$ and a circle out of the semicircle. [asy] draw((0,0)--(12,0)--(12,5)--cycle); draw((0,0)--(12,0)--(12,-5)--cycle); draw(circle((8.665,0),3.3333)); label("$A$", (0,0), hhhhhhhhhhhhhhhhhhhhhhhh); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$B'$", (12,-5), NE); label("$12$", (7, 0), S); label("$5$", (12, 2.5), E); label("$5$", (12, -2.5), E);[/asy] We can see that our circle is the incircle of $ABB'.$ We can use a formula for finding the radius of the incircle. The area of a triangle $= \text{Semiperimeter} \cdot \text{inradius}$ . The area of $ABB'$ is $12\times5 = 60.$ The semiperimeter is $\dfrac{10+13+13}{2}=18.$ Simplifying $\dfrac{60}{18} = \dfrac{10}{3}.$ Our answer is therefore $\boxed{\textbf{(D)}\ \frac{10}{3}}.$

Asymptote diagram by Mathandski

Solution 2

Let the center of the semicircle be $O$. Let the point of tangency between line $AB$ and the semicircle be $F$. Angle $BAC$ is common to triangles $ABC$ and $AFO$. By tangent properties, angle $AFO$ must be $90$ degrees. Since both triangles $ABC$ and $AFO$ are right and share an angle, $AFO$ is similar to $ABC$. The hypotenuse of $AFO$ is $12 - r$, where $r$ is the radius of the circle. (See for yourself) The short leg of $AFO$ is $r$. Because $\triangle AFO$ ~ $\triangle ABC$, we have $r/(12 - r) = 5/13$ and solving gives $r = \boxed{\textbf{(D)}\ \frac{10}{3}}.$

Solution 3

Let the tangency point on $AB$ be $D$. Note \[AD = AB-BD = AB-BC = 8.\] By Power of a Point, \[12(12-2r) = 8^2.\] Solving for $r$ gives \[r = \boxed{\textbf{(D) }\frac{10}{3}}.\]

Solution 4

Let us label the center of the semicircle $O$ and the point where the circle is tangent to the triangle $D$. The area of $\triangle ABC$ = the areas of $\triangle ABO$ + $\triangle BCO$, which means $(12 \cdot 5)/2 = (13\cdot r)/2 +(5\cdot r)/2$. So, it gives us $r = \boxed{\textbf{(D)}\ \frac{10}{3}}$.

--LarryFlora

Solution 5 (Pythagorean Theorem)

We can draw another radius from the center to the point of tangency. This angle, $\angle{ODB}$, is $90^\circ$. Label the center $O$, the point of tangency $D$, and the radius $r$. [asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E); draw((8.665,0)--(7.4,3.07)); label("$O$", (8.665, 0), S); label("$D$", (7.4, 3.1), NW); label("$r$", (11, 0), S); label("$r$", (7.6, 1), W); [/asy]

Since $ODBC$ is a kite, then $DB=CB=5$. Also, $AD=13-5=8$. By the Pythagorean Theorem, $r^2 + 8^2=(12-r)^2$. Solving, $r^2+64=144-24r+r^2 \Rightarrow 24r=80 \Rightarrow \boxed{\textbf{(D) }\frac{10}{3}}$.

~MrThinker

Solution 6 (Basic Trignometry)

We can draw another radius from the center to the point of tangency. Label the center $O$, the point of tangency $D$, and the radius $r$. [asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E); draw((8.665,0)--(7.4,3.07)); label("$O$", (8.665, 0), S); label("$D$", (7.4, 3.1), NW); label("$r$", (11, 0), S); label("$r$", (7.6, 1), W); [/asy]

Since $ODBC$ is a kite, $DB=CB=5$, and $AB=13$ due to the Pythagorean Theorem. This angle, $\angle{ODB}$, is $90^\circ$, so $AD=AB-DB=13-5=8 \Rightarrow \tan \angle BAC = \frac{5}{12}=\frac{r}{8} \Rightarrow 12r=40 \Rightarrow r= \frac{40}{12}= \boxed{\textbf{(D)}\ \frac{10}{3}}$

~PowerQualimit

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/ZOHjUebMNpk

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/FDgcLW4frg8?t=3837

- pi_is_3.14

Video Solutions

https://youtu.be/Y0JBJgHsdGk

https://youtu.be/3VjySNobXLI

- Happytwin

https://youtu.be/KtmLUlCpj-I

- savannahsolver

Vertical videos for mobile phones:

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png