Difference between revisions of "2017 AMC 8 Problems/Problem 22"
(→Solution 6 (Basic Trignometry)) |
(→Solution 6 (Basic Trignometry)) |
||
Line 84: | Line 84: | ||
Since <math>ODBC</math> is a kite, <math>DB=CB=5</math>, and <math>AB=13</math> due to the [[Pythagorean Theorem]]. This angle, <math>\angle{ODB}</math>, is a <math>90^\circ</math>, so <math>AD=AB-DB=13-5=8 \Rightarrow \tan \angle BAC = \frac{5}{12}=\frac{r}{8} \Rightarrow 12r=40 \Rightarrow r= \frac{40}{12} = \boxed{\textbf{(D)}\ \frac{10}{3}}</math>. | Since <math>ODBC</math> is a kite, <math>DB=CB=5</math>, and <math>AB=13</math> due to the [[Pythagorean Theorem]]. This angle, <math>\angle{ODB}</math>, is a <math>90^\circ</math>, so <math>AD=AB-DB=13-5=8 \Rightarrow \tan \angle BAC = \frac{5}{12}=\frac{r}{8} \Rightarrow 12r=40 \Rightarrow r= \frac{40}{12} = \boxed{\textbf{(D)}\ \frac{10}{3}}</math>. | ||
− | ~[[User: | + | ~[[User:PowerQualimit|PowerQualimit]] |
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)== | ==Video Solution (CREATIVE THINKING + ANALYSIS!!!)== |
Revision as of 20:47, 17 September 2023
Contents
Problem
In the right triangle , , , and angle is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?
Solution 1
We can reflect triangle over line This forms the triangle and a circle out of the semicircle. We can see that our circle is the incircle of We can use a formula for finding the radius of the incircle. The area of a triangle . The area of is The semiperimeter is Simplifying Our answer is therefore
Asymptote diagram by Mathandski
Solution 2
Let the center of the semicircle be . Let the point of tangency between line and the semicircle be . Angle is common to triangles and . By tangent properties, angle must be degrees. Since both triangles and are right and share an angle, is similar to . The hypotenuse of is , where is the radius of the circle. (See for yourself) The short leg of is . Because ~ , we have and solving gives
Solution 3
Let the tangency point on be . Note By Power of a Point, Solving for gives
Solution 4
Let us label the center of the semicircle and the point where the circle is tangent to the triangle . The area of = the areas of + , which means . So, it gives us .
--LarryFlora
Solution 5 (Pythagorean Theorem)
We can draw another radius from the center to the point of tangency. This angle, , is . Label the center , the point of tangency , and the radius .
Since is a kite, then . Also, . By the Pythagorean Theorem, . Solving, .
~MrThinker
Solution 6 (Basic Trignometry)
We can draw another radius from the center to the point of tangency. Label the center , the point of tangency , and the radius .
Since is a kite, , and due to the Pythagorean Theorem. This angle, , is a , so .
Video Solution (CREATIVE THINKING + ANALYSIS!!!)
~Education, the Study of Everything
Video Solution by OmegaLearn
https://youtu.be/FDgcLW4frg8?t=3837
- pi_is_3.14
Video Solutions
- Happytwin
- savannahsolver
Vertical videos for mobile phones:
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.