Difference between revisions of "1979 USAMO Problems/Problem 2"
(→Solution) |
(→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | {{ | + | Since <math>N</math> is the north pole, we define the Earth with a sphere of radius one in space with <math>N=(0,0,1)</math> |
+ | We then pick point <math>N</math> on the sphere and define the <math>xz-plane</math> as the plane that contains great circle points <math>A</math> , <math>B</math>, and <math>N</math> with the <math>x-axis</math> perpendicular to the <math>z-axis</math> and in the direction of <math>A</math>. | ||
+ | |||
+ | Using this coordinate system and <math>x</math>, <math>y</math>, and <math>z</math> axes <math>A=(cos(\phi),0,sin(\phi))</math> | ||
+ | |||
+ | ~Tomas Diaz | ||
+ | |||
+ | {{alternate solutions}} | ||
==See Also== | ==See Also== |
Revision as of 16:42, 15 September 2023
Contents
Problem
is the north pole. and are points on a great circle through equidistant from . is a point on the equator. Show that the great circle through and bisects the angle in the spherical triangle (a spherical triangle has great circle arcs as sides).
Hint
Draw a large diagram. A nice, large, and precise diagram. Note that drawing a sphere entails drawing a circle and then a dashed circle (preferably of a different color) perpendicular (in the plane) to the original circle.
Solution
Since is the north pole, we define the Earth with a sphere of radius one in space with We then pick point on the sphere and define the as the plane that contains great circle points , , and with the perpendicular to the and in the direction of .
Using this coordinate system and , , and axes
~Tomas Diaz
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1979 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.