Difference between revisions of "Mock AIME 5 Pre 2005 Problems/Problem 2"
(Created page with "We have <math>a\geq1</math>. If <math>a=1</math>, then <math>f=0</math>, but <math>f\geq1</math>. If <math>a=2</math> and <math>b=0</math>, then <math>g=0=b</math>, a contradi...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
We have <math>a\geq1</math>. | We have <math>a\geq1</math>. | ||
− | If <math>a=1</math>, then <math>f=0</math>, but <math>f\geq1</math>. | + | If <math>a=1</math>, then <math>f=0</math>, but <math>f\geq1</math>, a contradiction. |
If <math>a=2</math> and <math>b=0</math>, then <math>g=0=b</math>, a contradiction. | If <math>a=2</math> and <math>b=0</math>, then <math>g=0=b</math>, a contradiction. | ||
If <math>a=2</math> and <math>b=1</math>, then <math>f=1=b</math>, a contradiction. | If <math>a=2</math> and <math>b=1</math>, then <math>f=1=b</math>, a contradiction. | ||
Line 7: | Line 7: | ||
If <math>a=2</math> and <math>b=4</math>, then <math>g=2=b</math>, a contradiction. | If <math>a=2</math> and <math>b=4</math>, then <math>g=2=b</math>, a contradiction. | ||
If <math>a=2</math> and <math>b=5</math>, then <math>g=2=b</math>, a contradiction. | If <math>a=2</math> and <math>b=5</math>, then <math>g=2=b</math>, a contradiction. | ||
− | If <math>a=2</math> and <math>b=6</math>, then <math>f=1</math> and <math>g=3</math>. | + | If <math>a=2</math> and <math>b=6</math>, then <math>f=1</math> and <math>g=3</math>. Thus, we must have cde=2(hij), where <math>c, d, e, h, i, j</math> are distinct digits from the list <math>0, 4, 5, 7, 8, 9</math>. |
− | Thus, we must have | ||
− | cde=2(hij), | ||
− | where <math>c, d, e, h, i, j</math> are distinct digits from the list <math>0, 4, 5, 7, 8, 9</math>. | ||
If <math>h\geq5</math>, then we have <math>c\geq10</math>, a contradiction. Thus, we must have <math>h=4</math>, and therefore <math>c=8, 9</math>. | If <math>h\geq5</math>, then we have <math>c\geq10</math>, a contradiction. Thus, we must have <math>h=4</math>, and therefore <math>c=8, 9</math>. | ||
If <math>c=8</math>, then we have <math>i\leq4</math>, so <math>i=0, 4</math>. | If <math>c=8</math>, then we have <math>i\leq4</math>, so <math>i=0, 4</math>. | ||
Line 16: | Line 13: | ||
If we have <math>i=0</math> then <math>d=0</math> (as <math>1</math> is not in the list of permitted digits). Thus, we must have <math>c=9</math>. | If we have <math>i=0</math> then <math>d=0</math> (as <math>1</math> is not in the list of permitted digits). Thus, we must have <math>c=9</math>. | ||
If we have <math>j=7</math>, then <math>e=4=c</math>, a contradiction. | If we have <math>j=7</math>, then <math>e=4=c</math>, a contradiction. | ||
− | If we have <math>j=8</math>, then <math>e=6</math>, which is not in the list, a contradiction. | + | If we have <math>j=8</math>, then <math>e=6</math>, which is not in the list of permitted digits, a contradiction. |
− | If we have <math>j=0</math>, then <math>e=0=j</math>, a contradiction. Thus, we must have <math>j=5</math>, and therefore <math>e=0</math>. | + | If we have <math>j=0</math>, then <math>e=0=j</math>, a contradiction. |
− | But now we must have <math>d</math> odd as <math>j=5</math>. Thus, we have <math>d=7</math> and <math>i=8</math>. | + | Thus, we must have <math>j=5</math>, and therefore <math>e=0</math>. But now we must have <math>d</math> odd as <math>j=5</math>. Thus, we have <math>d=7</math> and <math>i=8</math>. Thus, our minimal responsible pair of two 5-digit numbers is |
− | Thus, our minimal responsible pair of two 5-digit numbers is | ||
abcde=26970, | abcde=26970, | ||
fghij=13485. | fghij=13485. | ||
− | So, we have | + | So, we have b+c+d+i+j=6+9+7+8+5=35. |
− | + | ~AbbyWong |
Latest revision as of 05:41, 5 September 2023
We have . If , then , but , a contradiction. If and , then , a contradiction. If and , then , a contradiction. If and , then , a contradiction. If and , then , a contradiction. If and , then , a contradiction. If and , then , a contradiction. If and , then and . Thus, we must have cde=2(hij), where are distinct digits from the list . If , then we have , a contradiction. Thus, we must have , and therefore . If , then we have , so . If we have then , a contradiction. If we have then (as is not in the list of permitted digits). Thus, we must have . If we have , then , a contradiction. If we have , then , which is not in the list of permitted digits, a contradiction. If we have , then , a contradiction. Thus, we must have , and therefore . But now we must have odd as . Thus, we have and . Thus, our minimal responsible pair of two 5-digit numbers is abcde=26970, fghij=13485. So, we have b+c+d+i+j=6+9+7+8+5=35. ~AbbyWong