|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | <asy>
| + | |
− | import olympiad;
| |
− | size(350);
| |
− | defaultpen(linewidth(0.7));
| |
− | // define a bunch of arrays and starting points
| |
− | pair[] coord = new pair[65];
| |
− | int[] trav = {32,16,8,4,2,1};
| |
− | coord[0] = (0,73^2); coord[64] = (2*73*70,70^2);
| |
− | // draw the big circles and the bottom line
| |
− | path arc1 = arc(coord[0],coord[0].y,260,360);
| |
− | path arc2 = arc(coord[64],coord[64].y,175,280);
| |
− | fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.75));
| |
− | fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.75));
| |
− | draw(arc1^^arc2);
| |
− | draw((-930,0)--(70^2+73^2+850,0));
| |
− | // We now apply the findCenter function 63 times to get
| |
− | // the location of the centers of all 63 constructed circles.
| |
− | // The complicated array setup ensures that all the circles
| |
− | // will be taken in the right order
| |
− | for(int i = 0;i<=5;i=i+1)
| |
− | {
| |
− | int skip = trav[i];
| |
− | for(int k=skip;k<=64 - skip; k = k + 2*skip)
| |
− | {
| |
− | pair cent1 = coord[k-skip], cent2 = coord[k+skip];
| |
− | real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2);
| |
− | real shiftx = cent1.x + sqrt(4*r1*rn);
| |
− | coord[k] = (shiftx,rn);
| |
− | }
| |
− | // Draw the remaining 63 circles
| |
− | }
| |
− | for(int i=1;i<=63;i=i+1)
| |
− | {
| |
− | filldraw(circle(coord[i],coord[i].y),gray(0.75));
| |
− | }</asy>
| |