Difference between revisions of "2015 AMC 10B Problems/Problem 14"

(Solution)
m (Video Solution 2)
 
(18 intermediate revisions by 8 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) }15\qquad \textbf{(B) }15.5\qquad \textbf{(C) }16\qquad \textbf{(D) }16.5\qquad \textbf{(E) }17</math>
 
<math>\textbf{(A) }15\qquad \textbf{(B) }15.5\qquad \textbf{(C) }16\qquad \textbf{(D) }16.5\qquad \textbf{(E) }17</math>
  
==Solution==
+
==Solution 1==
Expanding the equation and combining like terms results in <math>2x^2-(a+2b+c)x+(ab+bc)=0</math>. By Vieta's formulae the sum of the roots is <math>\dfrac{-[-(a+2b+c)]}{2}=\dfrac{a+2b+c}{2}</math>. To maximize this expression we want <math>b</math> to be the largest, and from there we can assign the next highest values to <math>a</math> and <math>c</math>. So let <math>b=9</math>, <math>a=8</math>, and <math>c=7</math>. Then the answer is <math>\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}</math>.
+
 
 +
Expanding the equation and combining like terms results in <math>2x^2-(a+2b+c)x+(ab+bc)=0</math>. By Vieta's formula the sum of the roots is <math>\dfrac{-[-(a+2b+c)]}{2}=\dfrac{a+2b+c}{2}</math>. To maximize this expression we want <math>b</math> to be the largest, and from there we can assign the next highest values to <math>a</math> and <math>c</math>. So let <math>b=9</math>, <math>a=8</math>, and <math>c=7</math>. Then the answer is <math>\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}</math>.
  
 
==Solution 2==
 
==Solution 2==
 +
 +
Factoring out <math>(x-b)</math> from the equation yields <math>(x-b)(2x-(a+c))=0 \Rightarrow (x-b)\left(x-\frac{a+c}{2}\right)=0</math>. Therefore the roots are <math>b</math> and <math>\frac{a+c}{2}</math>. Because <math>b</math> must be the larger root to maximize the sum of the roots, letting <math>a,b,</math> and <math>c</math> be <math>8,9,</math> and <math>7</math> respectively yields the sum <math>9+\frac{8+7}{2} = 9+7.5 = \boxed{\textbf{(D)}~16.5}</math>.
 +
 +
==Video Solution 1==
 +
https://youtu.be/rkusS2sqCEo
 +
 +
~Education, the Study of Everything=
 +
 +
==Video Solution 2==
 +
https://youtu.be/sgbVftpqBs0
 +
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2015|ab=B|num-b=13|num-a=15}}
 
{{AMC10 box|year=2015|ab=B|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:46, 25 August 2023

Problem

Let $a$, $b$, and $c$ be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation $(x-a)(x-b)+(x-b)(x-c)=0$?

$\textbf{(A) }15\qquad \textbf{(B) }15.5\qquad \textbf{(C) }16\qquad \textbf{(D) }16.5\qquad \textbf{(E) }17$

Solution 1

Expanding the equation and combining like terms results in $2x^2-(a+2b+c)x+(ab+bc)=0$. By Vieta's formula the sum of the roots is $\dfrac{-[-(a+2b+c)]}{2}=\dfrac{a+2b+c}{2}$. To maximize this expression we want $b$ to be the largest, and from there we can assign the next highest values to $a$ and $c$. So let $b=9$, $a=8$, and $c=7$. Then the answer is $\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}$.

Solution 2

Factoring out $(x-b)$ from the equation yields $(x-b)(2x-(a+c))=0 \Rightarrow (x-b)\left(x-\frac{a+c}{2}\right)=0$. Therefore the roots are $b$ and $\frac{a+c}{2}$. Because $b$ must be the larger root to maximize the sum of the roots, letting $a,b,$ and $c$ be $8,9,$ and $7$ respectively yields the sum $9+\frac{8+7}{2} = 9+7.5 = \boxed{\textbf{(D)}~16.5}$.

Video Solution 1

https://youtu.be/rkusS2sqCEo

~Education, the Study of Everything=

Video Solution 2

https://youtu.be/sgbVftpqBs0

~savannahsolver

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png