Difference between revisions of "1998 USAMO Problems/Problem 3"
(→Solution) |
|||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>(0,\frac {\pi}{2})</math> such that | + | Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>\left(0,\frac {\pi}{2}\right)</math> such that |
− | <cmath>\tan{(a_0 - \frac {\pi}{4})} + \tan{(a_1 - \frac {\pi}{4})} + \cdots + \tan{(a_n - \frac {\pi}{4})}\ge n - 1</cmath> | + | <cmath>\tan{\left(a_0 - \frac {\pi}{4}\right)} + \tan{\left(a_1 - \frac {\pi}{4}\right)} + \cdots + \tan{\left(a_n - \frac {\pi}{4}\right)}\ge n - 1</cmath> |
− | Prove that <math>\tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>. | + | Prove that <math>\tan{\left(a_0\right)}\tan{\left(a_1\right)}\cdots \tan{\left(a_n\right)}\ge n^{n + 1}</math>. |
== Solution == | == Solution == | ||
Line 13: | Line 13: | ||
By AM-GM, | By AM-GM, | ||
− | + | <cmath>\begin{align*} | |
− | + | \frac {1}{n}\sum_{j\neq i}{(1 - y_j)} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ | |
− | + | \frac {1 + y_i}{n} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ | |
− | + | \prod_{i = 0}^n\frac{1 + y_i}{n} &\geq \prod_{i = 0}^{n} {\prod_{j\neq i} {(1 - y_j)}^{\frac {1}{n}}}\\ | |
− | + | \prod_{i = 0}^n\frac {1 + y_i}{n} &\geq \prod_{i = 0}^n{(1 - y_i)}\\ | |
+ | \prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq \prod_{i = 0}^n{n}\\ | ||
+ | \prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq n^{n + 1} | ||
+ | \end{align*}</cmath> | ||
− | Note that by the addition formula for tangents, < | + | Note that by the addition formula for tangents, <cmath>\tan{(a_i)} = \tan{[(a_i - \frac {\pi}{4}) + \frac {\pi}{4}]} = \frac {1 + \tan{(a_i - \frac {\pi}{4})}}{1 - \tan{(a_i - \frac {\pi}{4})}} = \frac {1 + y_i}{1 - y_i}</cmath>. |
− | So <math>\prod_{i = 0}^n{\frac {1 + y_i}{1 - y_i}} = \tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>, as desired. | + | So <math>\prod_{i = 0}^n{\frac {1 + y_i}{1 - y_i}} = \tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>, as desired. <math>\blacksquare</math> |
− | |||
− | <math>\ | ||
==See Also== | ==See Also== | ||
Line 29: | Line 30: | ||
{{USAMO newbox|year=1998|num-b=2|num-a=4}} | {{USAMO newbox|year=1998|num-b=2|num-a=4}} | ||
[[Category:Olympiad Trigonometry Problems]] | [[Category:Olympiad Trigonometry Problems]] | ||
+ | [[Category:Olympiad Algebra Problems]] | ||
+ | [[Category:Olympiad Inequality Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 12:31, 23 August 2023
Problem
Let be real numbers in the interval such that Prove that .
Solution
Let , where . Then we have
By AM-GM,
Note that by the addition formula for tangents, .
So , as desired.
See Also
1998 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.