Difference between revisions of "2003 AMC 10A Problems/Problem 14"

m (Video Solution by WhyMath)
 
(19 intermediate revisions by 7 users not shown)
Line 4: Line 4:
 
<math> \mathrm{(A) \ } 12\qquad \mathrm{(B) \ } 15\qquad \mathrm{(C) \ } 18\qquad \mathrm{(D) \ } 21\qquad \mathrm{(E) \ } 24 </math>
 
<math> \mathrm{(A) \ } 12\qquad \mathrm{(B) \ } 15\qquad \mathrm{(C) \ } 18\qquad \mathrm{(D) \ } 21\qquad \mathrm{(E) \ } 24 </math>
  
== Solution ==
+
== Solution 1 ==
 +
 
 +
Since we want <math>n</math> to be as large as possible, we would like <math>d</math> in <math>10d+e</math> to be as large as possible. So, <math>d=7,</math> the greatest single-digit prime. Then, <math>e</math> cannot be <math>5</math> because <math>10(7)+5 = 75,</math> which is not prime. So <math>e = 3</math>. Therefore, <math>d \cdot e \cdot (10d+e) = 7 \cdot 3 \cdot 73 = 1533</math>.
 +
So, the sum of the digits of <math>n</math> is <math>1+5+3+3=12 \Rightarrow \boxed{\mathrm{(A)}\ 12}</math> ~ MathGenius_ (Edited by Sophia866)
 +
 
 +
== Solution 2 ==
 
Since <math>d</math> is a single digit prime number, the set of possible values of <math>d</math> is <math>\{2,3,5,7\}</math>.  
 
Since <math>d</math> is a single digit prime number, the set of possible values of <math>d</math> is <math>\{2,3,5,7\}</math>.  
  
Line 25: Line 30:
 
The largest possible value of <math>n</math> is <math>1533</math>.  
 
The largest possible value of <math>n</math> is <math>1533</math>.  
  
So, the sum of the digits of <math>n</math> is <math>1+5+3+3=12 \Rightarrow A</math>
+
So, the sum of the digits of <math>n</math> is <math>1+5+3+3=12 \Rightarrow \boxed{\mathrm{(A)}\ 12}</math>
 +
 
 +
==Video Solution(s)==
 +
https://youtu.be/NbkwhS7k2oU
 +
 
 +
~savannahsolver
 +
 
 +
https://www.youtube.com/watch?v=yApq-Vny_A0 
 +
 +
~David
  
 
== See Also ==
 
== See Also ==

Latest revision as of 14:49, 19 August 2023

Problem

Let $n$ be the largest integer that is the product of exactly 3 distinct prime numbers $d$, $e$, and $10d+e$, where $d$ and $e$ are single digits. What is the sum of the digits of $n$?

$\mathrm{(A) \ } 12\qquad \mathrm{(B) \ } 15\qquad \mathrm{(C) \ } 18\qquad \mathrm{(D) \ } 21\qquad \mathrm{(E) \ } 24$

Solution 1

Since we want $n$ to be as large as possible, we would like $d$ in $10d+e$ to be as large as possible. So, $d=7,$ the greatest single-digit prime. Then, $e$ cannot be $5$ because $10(7)+5 = 75,$ which is not prime. So $e = 3$. Therefore, $d \cdot e \cdot (10d+e) = 7 \cdot 3 \cdot 73 = 1533$. So, the sum of the digits of $n$ is $1+5+3+3=12 \Rightarrow \boxed{\mathrm{(A)}\ 12}$ ~ MathGenius_ (Edited by Sophia866)

Solution 2

Since $d$ is a single digit prime number, the set of possible values of $d$ is $\{2,3,5,7\}$.

Since $e$ is a single digit prime number and is the units digit of the prime number $10d+e$, the set of possible values of $e$ is $\{3,7\}$.

Using these values for $d$ and $e$, the set of possible values of $10d+e$ is $\{23,27,33,37,53,57,73,77\}$

Out of this set, the prime values are $\{23,37,53,73\}$

Therefore the possible values of $n$ are:

$2\cdot3\cdot23=138$

$3\cdot7\cdot37=777$

$5\cdot3\cdot53=795$

$7\cdot3\cdot73=1533$

The largest possible value of $n$ is $1533$.

So, the sum of the digits of $n$ is $1+5+3+3=12 \Rightarrow \boxed{\mathrm{(A)}\ 12}$

Video Solution(s)

https://youtu.be/NbkwhS7k2oU

~savannahsolver

https://www.youtube.com/watch?v=yApq-Vny_A0

~David

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png