Difference between revisions of "2023 USAMO Problems/Problem 6"
(→Solution 1) |
(→Solution 1) |
||
Line 140: | Line 140: | ||
We claim that <math>\angle{}I_BE'I_C+\angle{}I_BDI_C=180^\circ</math>. Construct <math>D'</math> to be the intersection of line <math>\overline{AE}</math> and the circumcircle of <math>\triangle{}EI_BI_C</math> and let <math>B'</math> and <math>C'</math> be the intersections of lines <math>\overline{AC}</math> and <math>\overline{AB}</math> with the circumcircle of <math>\triangle{}BI_BI_C</math>. Since <math>B'</math> and <math>C'</math> are the reflections of <math>B</math> and <math>C</math> over <math>\overline{I_BI_C}</math>, it is sufficient to prove that <math>A,B',C',D'</math> are concyclic. Since <math>\overline{B'C},\overline{D'E'},</math> and <math>\overline{I_BI_C}</math> concur and <math>D',E',I_B,I_C</math> and <math>I_B,I_C,B',C</math> are concyclic, we have that <math>B',C,D',E'</math> are concyclic, so <math>\angle{}B'D'A=\angle{}ACE'=\angle{}AC'B'</math>, so <math>A,B',C',D'</math> are concyclic, proving the claim. We can similarly get that <math>\angle{}IE'I_A=\angle{}IDI_A</math>. | We claim that <math>\angle{}I_BE'I_C+\angle{}I_BDI_C=180^\circ</math>. Construct <math>D'</math> to be the intersection of line <math>\overline{AE}</math> and the circumcircle of <math>\triangle{}EI_BI_C</math> and let <math>B'</math> and <math>C'</math> be the intersections of lines <math>\overline{AC}</math> and <math>\overline{AB}</math> with the circumcircle of <math>\triangle{}BI_BI_C</math>. Since <math>B'</math> and <math>C'</math> are the reflections of <math>B</math> and <math>C</math> over <math>\overline{I_BI_C}</math>, it is sufficient to prove that <math>A,B',C',D'</math> are concyclic. Since <math>\overline{B'C},\overline{D'E'},</math> and <math>\overline{I_BI_C}</math> concur and <math>D',E',I_B,I_C</math> and <math>I_B,I_C,B',C</math> are concyclic, we have that <math>B',C,D',E'</math> are concyclic, so <math>\angle{}B'D'A=\angle{}ACE'=\angle{}AC'B'</math>, so <math>A,B',C',D'</math> are concyclic, proving the claim. We can similarly get that <math>\angle{}IE'I_A=\angle{}IDI_A</math>. | ||
− | + | <asy> | |
size(500); | size(500); | ||
pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,JP,KP; | pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,JP,KP; | ||
Line 172: | Line 172: | ||
draw(G--JP); | draw(G--JP); | ||
draw(H--KP); | draw(H--KP); | ||
− | dot(" | + | dot("$A$",A,dir(A-circumcenter(A,B,C))); |
− | dot(" | + | dot("$B$",B,1/2*dir(B-dir(circumcenter(A,B,C))*dir(90)+dir(B-C))); |
− | dot(" | + | dot("$C$",C,dir(C-circumcenter(A,B,C))*dir(15)); |
− | dot(" | + | dot("$D$",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); |
− | dot(" | + | dot("$E'$",E,dir(dir(H-K)+dir(B-C))); |
− | dot(" | + | dot("$F$",F,dir(dir(90)*dir(F-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(D,IB,IC)-F))); |
− | dot(" | + | dot("$G$",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); |
− | dot(" | + | dot("$H$",H,dir(dir(90)*dir(circumcenter(D,IB,IC)-H)+dir(90)*dir(H-circumcenter(A,B,C)))); |
− | dot(" | + | dot("$I$",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); |
− | dot(" | + | dot("$J$",J,dir(dir(circumcenter(A,B,C)-J)*dir(90)+dir(J-G))); |
− | dot(" | + | dot("$K$",K,dir(dir(K-circumcenter(A,B,C))*dir(90)+dir(K-H))); |
− | dot(" | + | dot("$I_A$",IA,dir(IA-circumcenter(D,I,IA))); |
− | dot(" | + | dot("$I_B$",IB,dir(dir(IB-IC)+dir(IB-IA))); |
− | dot(" | + | dot("$I_C$",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); |
− | dot(" | + | dot("$P$",P,dir(dir(A-I)+dir(C-B))); |
− | dot(" | + | dot("$Q$",Q,dir(dir(IC-IB)+dir(B-C))); |
− | dot(" | + | dot("$J'$",JP,dir(JP-circumcenter(D,I,IA))); |
− | dot(" | + | dot("$K'$",KP,dir(KP-circumcenter(D,IB,IC))); |
− | + | </asy> | |
Let line <math>\overline{E'J}</math> intersect the circumcircle of <math>\triangle{}DII_A</math> at <math>G</math> and <math>J'</math>. Notice that <math>J</math> is the midpoint of <math>\overline{II_A}</math> and <math>\angle{}IE'I_A=\angle{}IDI_A=\angle{}IJ'I_A</math>, so <math>IE'I_AJ'</math> is a parallelogram with center <math>J</math>, so <math>\tfrac{}{EJ}{EJ'}=\tfrac{1}{2}</math>. Similarly, we get that if line <math>\overline{E'K}</math> intersects the circumcircle of <math>\triangle{}DI_BI_C</math> at <math>H</math> and <math>K'</math>, we have that <math>\tfrac{EK}{EK'}=\tfrac{1}{2}</math>, so <math>\overline{KJ}\parallel\overline{K'J'}</math>, so <math>\angle{}HGJ'=\angle{}HGJ=\angle{}HKJ=\angle{}HK'J'</math>, so <math>G,H,J',K'</math> are concyclic. Then, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}DI_BI_C,</math> and <math>GHJ'K'</math> are <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math>, so <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math> concur, so <math>\overline{DF},\overline{HK},</math> and <math>\overline{GJ}</math> concur, so <math>E=E'</math>. We are then done since <math>\angle{}BAE'=\angle{}CAD</math>. | Let line <math>\overline{E'J}</math> intersect the circumcircle of <math>\triangle{}DII_A</math> at <math>G</math> and <math>J'</math>. Notice that <math>J</math> is the midpoint of <math>\overline{II_A}</math> and <math>\angle{}IE'I_A=\angle{}IDI_A=\angle{}IJ'I_A</math>, so <math>IE'I_AJ'</math> is a parallelogram with center <math>J</math>, so <math>\tfrac{}{EJ}{EJ'}=\tfrac{1}{2}</math>. Similarly, we get that if line <math>\overline{E'K}</math> intersects the circumcircle of <math>\triangle{}DI_BI_C</math> at <math>H</math> and <math>K'</math>, we have that <math>\tfrac{EK}{EK'}=\tfrac{1}{2}</math>, so <math>\overline{KJ}\parallel\overline{K'J'}</math>, so <math>\angle{}HGJ'=\angle{}HGJ=\angle{}HKJ=\angle{}HK'J'</math>, so <math>G,H,J',K'</math> are concyclic. Then, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}DI_BI_C,</math> and <math>GHJ'K'</math> are <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math>, so <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math> concur, so <math>\overline{DF},\overline{HK},</math> and <math>\overline{GJ}</math> concur, so <math>E=E'</math>. We are then done since <math>\angle{}BAE'=\angle{}CAD</math>. |
Revision as of 17:05, 6 August 2023
Problem
Let ABC be a triangle with incenter and excenters , , opposite , , and , respectively. Given an arbitrary point on the circumcircle of that does not lie on any of the lines , , or , suppose the circumcircles of and intersect at two distinct points and . If is the intersection of lines and , prove that .
Solution 1
Consider points and such that the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with line are and , the intersections of the circumcircle of with line are and , the intersection of lines and is , and the intersection of lines and is .
Since is cyclic, the pairwise radical axes of the circumcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. Similarly, since is cyclic, the pairwise radical axes of the cirucmcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. This means that , so the tangents to the circumcircle of at and intersect on . Let this intersection be . Also, let the intersection of the tangents to the circumcircle of at and be a point at infinity on called and let the intersection of lines and be . Then, let the intersection of lines and be . By Pascal's Theorem on and , we get that and are collinear and that and are collinear, so and are collinear, meaning that lies on since both and lie on .
Consider the transformation which is the composition of an inversion centered at and a reflection over the angle bisector of that sends to and to . We claim that this sends to and to . It is sufficient to prove that if the transformation sends to , then is cyclic. Notice that since and . Therefore, we get that , so is cyclic, proving the claim. This means that .
We claim that . Construct to be the intersection of line and the circumcircle of and let and be the intersections of lines and with the circumcircle of . Since and are the reflections of and over , it is sufficient to prove that are concyclic. Since and concur and and are concyclic, we have that are concyclic, so , so are concyclic, proving the claim. We can similarly get that .
Let line intersect the circumcircle of at and . Notice that is the midpoint of and , so is a parallelogram with center , so . Similarly, we get that if line intersects the circumcircle of at and , we have that , so , so , so are concyclic. Then, the pairwise radical axes of the circumcircles of and are and , so and concur, so and concur, so . We are then done since .
~Zhaom
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.