Difference between revisions of "2005 AIME II Problems/Problem 1"

m (Solution: Fixed a typo)
(See Also)
 
Line 23: Line 23:
 
{{AIME  box|year=2005|n=II|before=First Question|num-a=2}}
 
{{AIME  box|year=2005|n=II|before=First Question|num-a=2}}
  
[[Category:Introductory Combinatorics Problems]]
+
[[Category:Introductory Combinatorics Problems, Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:54, 31 July 2023

Problem

A game uses a deck of $n$ different cards, where $n$ is an integer and $n \geq 6.$ The number of possible sets of 6 cards that can be drawn from the deck is 6 times the number of possible sets of 3 cards that can be drawn. Find $n.$

Video Solution

https://youtu.be/IRyWOZQMTV8?t=150

~ pi_is_3.14

Solution

The number of ways to draw six cards from $n$ is given by the binomial coefficient ${n \choose 6} = \frac{n\cdot(n-1)\cdot(n-2)\cdot(n-3)\cdot(n-4)\cdot(n-5)}{6\cdot5\cdot4\cdot3\cdot2\cdot1}$.

The number of ways to choose three cards from $n$ is ${n\choose 3} = \frac{n\cdot(n-1)\cdot(n-2)}{3\cdot2\cdot1}$.

We are given that ${n\choose 6} = 6 {n \choose 3}$, so $\frac{n\cdot(n-1)\cdot(n-2)\cdot(n-3)\cdot(n-4)\cdot(n-5)}{6\cdot5\cdot4\cdot3\cdot2\cdot1} = 6 \frac{n\cdot(n-1)\cdot(n-2)}{3\cdot2\cdot1}$.

Cancelling like terms, we get $(n - 3)(n - 4)(n - 5) = 720$.

We must find a factorization of the left-hand side of this equation into three consecutive integers. Since 720 is close to $9^3=729$, we try 8, 9, and 10, which works, so $n - 3 = 10$ and $n = \boxed{13}$.

See Also

2005 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png