Difference between revisions of "2020 AIME I Problems/Problem 1"

m (Solution 1)
(Problem)
Line 2: Line 2:
 
== Problem ==
 
== Problem ==
 
In <math>\triangle ABC</math> with <math>AB=AC,</math> point <math>D</math> lies strictly between <math>A</math> and <math>C</math> on side <math>\overline{AC},</math> and point <math>E</math> lies strictly between <math>A</math> and <math>B</math> on side <math>\overline{AB}</math> such that <math>AE=ED=DB=BC.</math> The degree measure of <math>\angle ABC</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
 
In <math>\triangle ABC</math> with <math>AB=AC,</math> point <math>D</math> lies strictly between <math>A</math> and <math>C</math> on side <math>\overline{AC},</math> and point <math>E</math> lies strictly between <math>A</math> and <math>B</math> on side <math>\overline{AB}</math> such that <math>AE=ED=DB=BC.</math> The degree measure of <math>\angle ABC</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
 
niggers
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 00:58, 25 July 2023

Problem

In $\triangle ABC$ with $AB=AC,$ point $D$ lies strictly between $A$ and $C$ on side $\overline{AC},$ and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC.$ The degree measure of $\angle ABC$ is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution 2

Let $\angle{BAC}$ be $x$ in degrees. $\angle{ADE}=x$. By Exterior Angle Theorem on triangle $AED$, $\angle{BED}=2x$. By Exterior Angle Theorem on triangle $ADB$, $\angle{BDC}=3x$. This tells us $\angle{BCA}=\angle{ABC}=3x$ and $3x+3x+x=180$. Thus $x=\frac{180}{7}$ and we want $\angle{ABC}=3x=\frac{540}{7}$ to get an answer of $\boxed{547}$.

Solution 3 (Official MAA)

Let $x = \angle ABC = \angle ACB$. Because $\triangle BCD$ is isosceles, $\angle CBD = 180^\circ - 2x$. Then \[\angle DBE = x - \angle CBD = x - (180^\circ - 2x) =  3x - 180^\circ\!.\]Because $\triangle EDA$ and $\triangle DBE$ are also isosceles, \[\angle BAC =\frac12(\angle EAD + \angle ADE) = \frac12(\angle BED)= \frac12(\angle DBE)\] \[= \frac12 (3x - 180^\circ) = \frac32x-90^\circ\!.\] Because $\triangle ABC$ is isosceles, $\angle BAC$ is also $180^\circ-2x$, so $\frac32x - 90^\circ = 180^\circ - 2x$, and it follows that $\angle ABC = x = \left(\frac{540}7\right)^\circ$. The requested sum is $540+7 = 547$.

[asy] unitsize(4 cm);  pair A, B, C, D, E; real a = 180/7;  A = (0,0); B = dir(180 - a/2); C = dir(180 + a/2); D = extension(B, B + dir(270 + a), A, C); E = extension(D, D + dir(90 - 2*a), A, B);  draw(A--B--C--cycle); draw(B--D--E);  label("$A$", A, dir(0)); label("$B$", B, NW); label("$C$", C, SW); label("$D$", D, S); label("$E$", E, N); [/asy]

https://artofproblemsolving.com/wiki/index.php/1961_AHSME_Problems/Problem_25 (Almost Mirrored)

See here for a video solution:

https://youtu.be/4XkA0DwuqYk

Solution 4 (writing equations)

graph soon

We write equations based on the triangle sum of angles theorem. There are angles that do not need variables as the less variables the better.

\begin{align*} \angle A &= y \\ \angle B &= x+z \\ \angle C &= \frac{180-x}{2} \\ \end{align*}

Then, using triangle sum of angles theorem, we find that

\begin{align*} \angle A + \angle B + \angle C = x+y+z+\frac{180-x}{2}=180 \\ \end{align*}

Now we just need to find the variables.

\begin{align*} (180-2y)+z = 180& \\ (180-2z)+y+\frac{180-x}{2} = 180& \\ \end{align*}

Notice how all the equations equal 180. We can use this to write

\begin{align*} (180-2y)+z = (180-2z)+y+\frac{180-x}{2}=x+y+z+\frac{180-x}{2} \\ \end{align*}

Simplifying, we get

\begin{align*} (180-2y)+z=(180-2z)+y+\frac{180-x}{2} \\ 360-4y+2z=360-4z+2y+180-x \\ \end{align*}

\begin{align*} 6z=6y+180-x \\ x=6y-6z+180 \\ \end{align*}

\begin{align*} (180-2y)+z=6y-6z+180+y+z+\frac{180-(6y-6+180)}{2} \\ 360-4y+2z=12y-12z+360+2y+2z+180-6y+6z-180 \\ \end{align*}

\begin{align*} 6z=12y& \\ z=2y& \\ \end{align*}

Theres more. We are at a dead end right now because we forgot that the problem states that the triangle is isosceles. With this, we can write the equation

\begin{align*} \frac{180-x}{2}=x+z \\ \end{align*}

Substituting $z$ with $2y$, we get

\begin{align*} \frac{180-x}{2}=x+2y \\ 180-x=2x+4y \\ \end{align*} \begin{align*} 180-(6y-6z+180)=2(6y-6z+180)+4y& \\ 180-6y+12y-180=12y-24y+360+4y& \\ \end{align*} \begin{align*} 6y=-8y+360& \\ \end{align*}

With this, we get

\begin{align*} y=\frac{180}{7} \\ x=\frac{180}{7} \\ z=\frac{360}{7} \\ \end{align*}

And a final answer of $\frac{180}{7}+\frac{360}{7} = \frac{540}{7} = \boxed{547}$.

~orenbad

Video Solution by OmegaLearn

https://youtu.be/O_o_-yjGrOU?t=333

~ pi_is_3.14

Video solution

https://youtu.be/IH7yM3L5xjA

https://youtu.be/mgRNqSDCvgM ~yofro

Solution without words

2020 AIME I 1.png
2020 AIME I 1a.png

vladimir.shelomovskii@gmail.com, vvsss

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png