Difference between revisions of "2007 AMC 10A Problems/Problem 23"
m (→Solution 2) |
(→Solution 1) |
||
Line 8: | Line 8: | ||
For every two factors <math>xy = 96</math>, we have <math>m+n=x, m-n=y \Longrightarrow m = \frac{x+y}{2}, n = \frac{x-y}{2}</math>. It follows that the number of ordered pairs <math>(m,n)</math> is given by the number of ordered pairs <math>(x,y): xy=96, x > y > 0</math>. There are <math>(5+1)(1+1) = 12</math> factors of <math>96</math>, which give us six pairs <math>(x,y)</math>. However, since <math>m,n</math> are positive integers, we also need that <math>\frac{x+y}{2}, \frac{x-y}{2}</math> are positive integers, so <math>x</math> and <math>y</math> must have the same [[parity]]. Thus we exclude the factors <math>(x,y) = (1,96)(3,32)</math>, and we are left with <math>4</math> pairs <math>\mathrm{(B)}</math>. | For every two factors <math>xy = 96</math>, we have <math>m+n=x, m-n=y \Longrightarrow m = \frac{x+y}{2}, n = \frac{x-y}{2}</math>. It follows that the number of ordered pairs <math>(m,n)</math> is given by the number of ordered pairs <math>(x,y): xy=96, x > y > 0</math>. There are <math>(5+1)(1+1) = 12</math> factors of <math>96</math>, which give us six pairs <math>(x,y)</math>. However, since <math>m,n</math> are positive integers, we also need that <math>\frac{x+y}{2}, \frac{x-y}{2}</math> are positive integers, so <math>x</math> and <math>y</math> must have the same [[parity]]. Thus we exclude the factors <math>(x,y) = (1,96)(3,32)</math>, and we are left with <math>4</math> pairs <math>\mathrm{(B)}</math>. | ||
− | |||
− | |||
− | |||
− | |||
== Solution 3 == | == Solution 3 == |
Revision as of 13:18, 3 July 2023
Contents
Problem
How many ordered pairs of positive integers, with , have the property that their squares differ by ?
Solution 1
For every two factors , we have . It follows that the number of ordered pairs is given by the number of ordered pairs . There are factors of , which give us six pairs . However, since are positive integers, we also need that are positive integers, so and must have the same parity. Thus we exclude the factors , and we are left with pairs .
Solution 3
Find all of the factor pairs of : You can eliminate and ( because you cannot have two numbers add to be an even number and have an odd difference at the same time without them being a decimal. You only have pairs left, so the answer is .
~HelloWorld21
See also
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.