Difference between revisions of "2000 AIME I Problems/Problem 10"

m
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Let the sum of all of the terms in the sequence be <math>\mathbb{S}</math>.
 +
 
 +
<math>x_1=\mathbb{S}-x_1-1</math>
 +
 
 +
<math>x_2=\mathbb{S}-x_2-2</math>
 +
 
 +
<math>\vdots</math>
 +
 
 +
<math>x_{100}=\mathbb{S}-x_{100}-100</math>
 +
 
 +
<math>2x_n=\mathbb{S} - n</math>
 +
 
 +
<math>2\mathbb{S}=100\mathbb{S}-5050</math>
 +
 
 +
<math>98\mathbb{S}=5050</math>
 +
 
 +
<math>\mathbb{S}=\frac{2525}{49}</math>
 +
 
 +
<math>2x_{50}=\frac{2525}{49}-50=\frac{75}{49}</math>
 +
 
 +
<math>x_{50}=\frac{75}{98}</math>
 +
 
 +
<math>75+98=\boxed{173}</math>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2000|n=I|num-b=9|num-a=11}}
 
{{AIME box|year=2000|n=I|num-b=9|num-a=11}}

Revision as of 11:32, 13 November 2007

Problem

A sequence of numbers $x_{1},x_{2},x_{3},\ldots,x_{100}$ has the property that, for every integer $k$ between $1$ and $100,$ inclusive, the number $x_{k}$ is $k$ less than the sum of the other $99$ numbers. Given that $x_{50} = m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m + n$.

Solution

Let the sum of all of the terms in the sequence be $\mathbb{S}$.

$x_1=\mathbb{S}-x_1-1$

$x_2=\mathbb{S}-x_2-2$

$\vdots$

$x_{100}=\mathbb{S}-x_{100}-100$

$2x_n=\mathbb{S} - n$

$2\mathbb{S}=100\mathbb{S}-5050$

$98\mathbb{S}=5050$

$\mathbb{S}=\frac{2525}{49}$

$2x_{50}=\frac{2525}{49}-50=\frac{75}{49}$

$x_{50}=\frac{75}{98}$

$75+98=\boxed{173}$

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions