Difference between revisions of "Pell's equation (simple solutions)"
(→Equation of the form x^2 – 2y^2 = 1) |
(→Equation for binomial coefficients) |
||
(43 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
During the solution we need: | During the solution we need: | ||
− | a) to construct a recurrent sequence <math>\{x_{i+1}, y_{i+1} \} = f({x_i, | + | a) to construct a recurrent sequence <math>\{x_{i+1}, y_{i+1} \} = f({x_i, y_i});</math> |
b) to prove that the equation has no other integer solutions. | b) to prove that the equation has no other integer solutions. | ||
− | ==Equation of the form <math>x^2 | + | ==Equation of the form <math>x^2 - 2y^2 = 1</math>== |
− | <math>\boldsymbol{a.}</math> Let integers <math>(x_i, y_i)</math> are the solution | + | Prove that all positive integer solutions of the equation <math>x^2 - 2y^2 = 1</math> can be found using recursively transformation <math>x_{i+1} = 3 x_i + 4 y_i , y_{i+1} = 2 x_i + 3 y_i </math> of the pare <math>\{x_0, y_0\} = \{1,0\}.</math> |
− | <cmath>\ | + | |
− | + | <i><b>Proof</b></i> | |
− | + | ||
− | \end{ | + | <math>\boldsymbol{a.}</math> Let integers <math>(x_i, y_i)</math> are the solution of the equation <math>\hspace{10mm} x_i^2 - 2 y_i^2 = 1,</math> |
− | + | ||
+ | <cmath>\[ \begin{cases} | ||
+ | x_{i+1} &= 3 x_i + 4 y_i ,\\ | ||
+ | y_{i+1} &= 2 x_i + 3 y_i . | ||
+ | \end{cases} \]</cmath> | ||
+ | Then <cmath>x_{i+1}^2 - 2 y_{i+1}^2 = (3 x_i + 4 y_i)^2 - 2 (2 x_i + 3 y_i)^2 = x_i^2 - 2 y_i^2 = 1.</cmath> | ||
− | + | Therefore integers <math>(x_{i+1}, y_{i+1})</math> are the solution of the given equation. If <math>i > 0</math> then <cmath>x_{i+1} > y_{i+1} \ge 2(x_i + y_i) > x_i > y_i > 0.</cmath> | |
+ | <cmath>\{(x_i, y_i) \} = \{(1,0), (3,2), (17,12), (99,70), (577,408), (3363, 2738),...\}.</cmath> | ||
+ | |||
+ | <math>\boldsymbol{b.}</math> Suppose that the pare of the positive integers <math>(x_j, y_j)</math> is the solution different from founded in <math>\boldsymbol{a.}</math> | ||
+ | |||
+ | <math>x_j^2 - 2 y_j^2 = 1.</math> Let | ||
− | + | <cmath>\[ \begin{cases} | |
− | <cmath>\ | + | x_{i+1} &= 3 x_i - 4 y_i ,\\ |
− | + | y_{i+1} &= - 2 x_i + 3 y_i . | |
− | + | \end{cases} \]</cmath> | |
− | |||
− | |||
− | \end{ | ||
then <math>x_{i+1}^2 - 2 y_{i+1}^2 = (3 x_i - 4 y_i)^2 - 2 (-2 x_i + 3 y_i)^2 = x_i^2 - 2 y_i^2 = 1,</math> | then <math>x_{i+1}^2 - 2 y_{i+1}^2 = (3 x_i - 4 y_i)^2 - 2 (-2 x_i + 3 y_i)^2 = x_i^2 - 2 y_i^2 = 1,</math> | ||
therefore integers <math>(x_{i+1}, y_{i+1})</math> are the solution of the given equation. | therefore integers <math>(x_{i+1}, y_{i+1})</math> are the solution of the given equation. | ||
− | + | <math>x_i^2 = 2 y_i^2 +1 > 2 y_i^2 \implies x_i > y_i >0.</math> Similarly <math>x_{i +1}> y_{i+1}.</math> | |
+ | |||
+ | There is no integer solution if <math> y_j = 1. y_j = 0</math> is impossible. So <math>y_i > 1.</math> | ||
+ | <cmath>9 y_i^2 \ge 8 y_i^2 + 4 = 4 x_i^2 \implies 3y_i \ge 2x_i \implies y_{i+1} \ge 0.</cmath> | ||
+ | |||
+ | <cmath> 0 \le y_{i+1} = y_i - 2 (x_i - y_i) < y_i. </cmath> | ||
+ | |||
+ | There is no member <math>y_j = 0</math> in the sequence <math>\{y_i \},</math> hence it is infinitely decreasing sequence of natural numbers. There is no such sequence. Contradiction. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x(x + 1) = 2y^2</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x(x + 1) = 2y^2</math> can be found using recursively transformation <math>x_{i+1} = 3 x_i + 4 y_i + 1, y_{i+1} = 2 x_i + 3 y_i + 1</math> of the pare <math>\{x_0, y_0\} = \{0,0\}.</math> In another form <math>\sqrt{x_{i+1}} = \sqrt{2x_i} + \sqrt{x_i + 1}.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <cmath>x(x + 1) = 2y^2 \implies 4x^2 + 4x + 1 = 8y^2 + 1 \implies (2x+1)^2 - 2(2y)^2 = 1.</cmath> | ||
+ | It is the form of Pell's equation, therefore | ||
+ | <cmath>\[ \begin{cases} | ||
+ | 2x_{i+1}+1 &= 3 (2x_i + 1)+ 4 (2y_i) ,\\ | ||
+ | 2y_{i+1} &= 2 (2x_i + 1) +3 (2y_i) . | ||
+ | \end{cases} \]</cmath> | ||
+ | <cmath>\[ \begin{cases} | ||
+ | x_{i+1} &= 3x_i + 4y_i + 1,\\ | ||
+ | y_{i+1} &= 2x_i + 3y_i + 1. | ||
+ | \end{cases} \]</cmath> | ||
+ | |||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ [0.5ex] \hline | ||
+ | & & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 0 & 1 & 8 & 49 & 288 & 1681 & 9800 & 57121 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 0 & 1 & 6 & 35 & 204 & 1189 & 1681 & 40391 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | <cmath>x_{i+1} = 3 x_i + 4 y_i + 1 = 2x_i + 2 \sqrt {2 x_i (x_i + 1)} + (x_i + 1) = (\sqrt {2x_i} + \sqrt{x_i + 1})^2</cmath> | ||
+ | <cmath>\implies \sqrt{x_{i+1}}= \sqrt{2x_i} + \sqrt{x_i + 1}.</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - 2y^2 = - 1</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x^2 - 2y^2 = -1</math> can be found using recursively transformation | ||
+ | <cmath>\[ \begin{cases} | ||
+ | x_{i+1} &= 3 x_i + 4 y_i ,\\ | ||
+ | y_{i+1} &= 2 x_i + 3 y_i . | ||
+ | \end{cases} \]</cmath> | ||
+ | of the pare <math>\{x_0, y_0\} = \{1,1\}.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | The solution is similar to that discussed in the previous section. | ||
+ | |||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ [0.5ex] \hline | ||
+ | & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 1 & 7 & 41 & 239 & 1393 & 8119 & 47321 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 5 & 29 & 169 & 985 & 5741 & 33461 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Pythagorean triangles with almost equal legs== | ||
+ | Find all triangles with integer sides one leg of which is <math>1</math> more than the other. | ||
+ | |||
+ | Find all natural solutions of the equation <math>x^2 + (x+1)^2 = y^2.</math> | ||
+ | |||
+ | <i><b>Solution</b></i> | ||
+ | |||
+ | <cmath>x^2 +(x + 1)^2 = 2x^2 + 2x + 1 = y^2 \implies 4x^2 + 4x + 1 = 2y^2 - 1 \implies (2x+1)^2 - 2y^2 = -1.</cmath> | ||
+ | All positive integer solutions of the equation <math>(2x+1)^2 - 2y^2 = -1</math> can be found using recursively transformation | ||
+ | <cmath>\[ \begin{cases} 2x_{i+1}+1 &= 3 (2x_i + 1) + 4 y_i ,\\ | ||
+ | y_{i+1} &= 2(2x_i + 1) + 3 y_i . \end{cases} \]</cmath> | ||
+ | <cmath>\[ \begin{cases} x_{i+1} &= 3x_i + 2y_i + 1 ,\\ | ||
+ | y_{i+1} &= 4x_i + 3y_i + 2 . \end{cases} \]</cmath> | ||
+ | of the pare <math>\{x_0, y_0\} = \{0,1\}.</math> | ||
+ | |||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c} | ||
+ | & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 \\ [0.5ex] \hline | ||
+ | & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 0 & 3 & 20 & 119 & 696 & 4059 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 5 & 29 & 169 & 985 & 5741 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - 3y^2 = - 1</math>== | ||
+ | Prove that the equation <math>x^2 - 3y^2 = -1</math> have not any solution. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <cmath>x = 3k \implies x^2 \pmod{3}= 0.</cmath> | ||
+ | <cmath>x = 3k \pm 1 \implies x^2 \pmod{3}= 1.</cmath> | ||
+ | <cmath>(- 3y^2 + 1) \pmod {3} = 1 \implies (x^2 - 3y^2 + 1) \pmod {3} = \{1, 2 \} \ne 0 \implies</cmath> | ||
+ | <cmath>x^2 - 3y^2 + 1 \ne 0.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - 2y^2 = 7</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x^2 - 2y^2 = 7</math> can be found using recursively transformation | ||
+ | <cmath>\[ \begin{cases} x_{i+1} &= 3 x_i + 4 y_i ,\\ | ||
+ | y_{i+1} &= 2 x_i + 3 y_i . \end{cases} \]</cmath> | ||
+ | of the pares <math>\{x_1, y_1\} = \{3,1\}</math> and <math>\{\hat{x}_1, \hat{y}_1 \} = \{5,3\}</math>. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <math>\boldsymbol{a.}</math> Let integers <math>(x_i, y_i)</math> are the solution of the equation <math>\hspace{10mm} x_i^2 - 2 y_i^2 = 7,</math> | ||
+ | <cmath>\[ \begin{cases} x_{i+1} &= 3 x_i + 4 y_i ,\\ | ||
+ | y_{i+1} &= 2 x_i + 3 y_i . \end{cases} \]</cmath> | ||
+ | |||
+ | Then <cmath>x_{i+1}^2 - 2 y_{i+1}^2 = (3 x_i + 4 y_i)^2 - 2 (2 x_i + 3 y_i)^2 = x_i^2 - 2 y_i^2 = 7.</cmath> | ||
+ | |||
+ | Therefore integers <math>(x_{i+1}, y_{i+1})</math> are the solution of the given equation. | ||
+ | <cmath>x_{i+1} > y_{i+1} \ge 2(x_i + y_i) > x_i > y_i > 0.</cmath> | ||
+ | <cmath>\begin{array}{c|c|c|c|c|c} | ||
+ | & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 1 & 2 & 3 & 4 & 5 \\ [0.5ex] \hline | ||
+ | & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 3 & 13 & 75 & 437 & 2547 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 9 & 53 & 309 & 1801 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | <math>\boldsymbol{b.}</math> The pare of the positive integers <math>(\hat {x}_i, \hat{y}_i)</math> is the solution different from founded in <math>\boldsymbol{a.}</math> | ||
+ | |||
+ | <math>\hat {x}_i^2 - 2 \hat {y}_i^2 = 7.</math> Let | ||
+ | |||
+ | <cmath>\[ \begin{cases} \hat{x}_{i+1} &= 3 \hat{x}_i - 4 \hat{y}_i ,\\ | ||
+ | \hat{y}_{i+1} &= - 2 \hat{x}_i + 3 \hat{y}_i . \end{cases} \]</cmath> | ||
+ | |||
+ | then <cmath>\hat{x}_{i+1}^2 - 2 \hat{y}_{i+1}^2 = (3 \hat{x}_i - 4 \hat{y}_i)^2 - 2 (-2 \hat{x}_i + 3 \hat{y}_i)^2 = \hat{x}_i^2 - 2 \hat{y}_i^2 = 7,</cmath> | ||
+ | therefore integers <math>( \hat{x}_{i+1}, \hat{y}_{i+1})</math> are the solution of the given equation. | ||
+ | |||
+ | <math>\hat{x}_i^2 = 2 \hat{y}_i^2 +1 > 2 \hat{y}_i^2 \implies \hat{x}_i > \hat{y}_i > 0.</math> Similarly <math>\hat{x}_{i +1} > \hat{y}_{i+1}.</math> | ||
+ | |||
+ | If <math> \hat{y}_i > 5</math> then | ||
+ | <cmath>9 \hat{y}_i^2 \ge 8 \hat{y}_i^2 + 28 = 4 \hat{x}_i^2 \implies 3 \hat{y}_i \ge 2 \hat{x}_i \implies \hat{y}_{i+1} \ge 0.</cmath> | ||
+ | |||
+ | <cmath> 0 \le \hat{y}_{i+1} = \hat{y}_i - 2 (\hat{x}_i – \hat{y}_i) <\hat{y}_i. </cmath> | ||
+ | |||
+ | There is no member <math>\hat{y}_j = 0</math> in the sequence <math>\{\hat{y}_i \},</math> hence it is infinitely decreasing sequence of natural numbers. There is no such sequence. Contradiction. | ||
+ | |||
+ | We need to check <math>\hat{y}_j = \{2,4,5\}</math> (no solution), but <math>\hat{y}_j = 3</math> gives the integer solution, so there is the second sequence of the integer solutions | ||
+ | <cmath>\begin{array}{c|c|c|c|c|c} | ||
+ | & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 1 & 2 & 3 & 4 & 5 \\ [0.5ex] \hline | ||
+ | & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{\hat{x}_i} & 5 & 27 & 157 & 915 & 5333 \\ [1ex] | ||
+ | \boldsymbol{\hat{y}_i} & 3 & 19 & 111 & 647 & 3771 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - xy - y^2 = 1</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x^2 - xy - y^2 = 1</math> are <math>\{x_i, y_i \} = \{F_{2i +1}, F_{2i}\}.</math> They can be found using recursively transformation <math>y_{i+1} = x_i + y_i , x_{i+1} = 2x_i + y_i = y_{i+1} + x_i </math> of the pares <math>\{x_0, y_0\} = \{1,0\}.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | <cmath>x^2 - xy - y^2 = 1 \implies 4x^2 - 4xy + y^2 - 5y^2 = 1 \implies (2x+y)^2 - 5y^2 = 1.</cmath> | ||
+ | Let the pare of the positive integers <math>(x_i, y_i)</math> be the solution of given equation <math> x_i^2 - x_i y_i - y_i^2 = 1</math> and | ||
+ | <cmath>\[ \begin{cases} x_{i+1} &= 2x_i + y_i ,\\ | ||
+ | y_{i+1} &= x_i + y_i . \end{cases} \]</cmath> | ||
+ | Then | ||
+ | <cmath>x_{i + 1}^2 - x_{i + 1} y_{i + 1} - y_{i + 1}^2 = x_i^2 - x_i y_i - y_i^2 = 1.</cmath> | ||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ [0.5ex] \hline | ||
+ | & & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 1 & 2 & 5 & 13 & 34 & 89 & 233 & 610 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 0 & 1 & 3 & 8 & 21 & 55 & 144 & 377 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - xy - y^2 = -1</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x^2 - xy - y^2 = -1</math> are <math>\{x_i, y_i \} = \{F_{2i}, F_{2i-1}\}.</math> They can be found using recursively transformation | ||
+ | <cmath>\[ \begin{cases} x_{i+1} &= 2x_i + y_i = y_{i+1} + x_i,\\ | ||
+ | y_{i+1} &= x_i + y_i . \end{cases} \]</cmath> | ||
+ | of the pares <math>\{x_0, y_0\} = \{1,1\} = \{F_1, F_2 \}.</math> | ||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ [0.5ex] \hline | ||
+ | & & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 1 & 3 & 8 & 21 & 55 & 144 & 377 & 987 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 2 & 5 & 13 & 34 & 89 & 233 & 610 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form <math>x^2 - 5y^2 = 4</math>== | ||
+ | Prove that all positive integer solutions of the equation <math>x^2 - 5y^2 = 4</math> are <cmath>\{x_i, y_i \} = \{F_{2i+1} + F_{2i - 1}, F_{2i}\}.</cmath> | ||
+ | It is clear that solutions can be found using recursively transformation | ||
+ | <cmath>\[ \begin{cases} x_{i+1} = \frac {3x_i }{2}+ \frac {5y_i }{2},\\ | ||
+ | y_{i+1} = \frac {x_i }{2}+ \frac {3y_i }{2} \end{cases} \]</cmath> | ||
+ | of the pare <math>\{x_1, y_1\} = \{3, 1\} = \{F_3 +F_1, F_2\}.</math> | ||
+ | |||
+ | One can use the small transform for understanding | ||
+ | <cmath>x_{i + 1} - y_{i + 1} = x_i + y_i = (x_i - y_i) + 2y_i \Rightarrow 2F_{2i+1} = 2F_{2i-1} + 2F_{2i}, x_1-y_1 = 2F_1.</cmath> | ||
+ | <cmath>y_{i + 1} = \frac {x_i - y_i}{2}+ 2 y_i \Rightarrow F_{2i +2} = F_{2i-1} + 2F_{2i} = F_{2i+1} + F_{2i}, y_1 = F_2.</cmath> | ||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ [0.5ex] \hline | ||
+ | & & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{x_i} & 3 & 7 & 18 & 47 & 123 & 322 & 377 & 843 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 3 & 8 & 21 & 55 & 89 & 144 & 377 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation for binomial coefficients== | ||
+ | Find all positive integer solutions of equation <math>\binom{x}{y-1} = \binom{x-1}{y}.</math> | ||
+ | |||
+ | <i><b>Solution</b></i> | ||
+ | <cmath>\binom{x}{y-1} = \frac{x!}{(y-1)!(x-y+1)!}, \binom{x-1}{y} = \frac{(x-1)!}{y!(x-y-1)!} \implies </cmath> | ||
+ | <cmath>xy=(x-y+1) \cdot (x-y) \implies x^2 -3xy +y^2 +x - y = 0.</cmath> | ||
+ | It is known that every real quadratic form under a linear change of variables may be transformed in a "diagonal form". | ||
+ | <cmath>(x + \frac {1}{5})^2 + (y - \frac {1}{5})^2 - 3 (x + \frac {1}{5})(y - \frac {1}{5}) = \frac {1}{5},</cmath> | ||
+ | <cmath>(5y - 1)^2 - 5 (2x - 3y + 1)^2 = - 4,</cmath> | ||
+ | <cmath>u = 5y - 1, v = 2x - 3y + 1 \implies u^2 - 5 v^2 = - 4 \implies</cmath> | ||
+ | |||
+ | <cmath>\[ \begin{cases} u_i = 5y_i - 1 = F_{2i} + F_{2i - 2},\\ | ||
+ | v_i = 2x_i - 3y_i + 1 = F_{2i-1}. \end{cases} \]</cmath> | ||
+ | <cmath>y_i = \frac {F_{2i} + F_{2i - 2} + 1}{5} = \frac {L_{2i - 1} + 1}{5},</cmath> where L is Lucas number, | ||
+ | <math>L_0 = 2, L_1 = 1, L_i = F_{i-1} + F_{i+1} = L_i + L_{i - 1}.</math> | ||
+ | It is clear that <cmath>\{L_i \} = \{2,1,3,4,\hspace{5mm} 7,11,18,29, \hspace{5mm} 47,...\}</cmath> | ||
+ | <cmath>\{L_i \pmod 5 \} = \{2,1,3,4, \hspace{5mm} 2,1,3,4,\hspace{5mm} 2,...\}</cmath> | ||
+ | <cmath>L_i \pmod 5 = (L_{i-1} \pmod 5 + L_{i-2} \pmod 5 ) \pmod 5 = L_{i+4} \pmod 5,</cmath> | ||
+ | so sequence of Lucas numbers modulo <math>5</math> is periodic, the period is <math>4,</math> and the numbers with index <math>4i-1</math> (only these numbers) are <math>4</math> modulo <math>5.</math> | ||
+ | |||
+ | Therefore only numbers <cmath>y_i = \frac {F_{4i} + F_{4i – 2} + 1}{5}</cmath> are integer. | ||
+ | |||
+ | We use the identities <cmath>F_{2i-1}^2- F_{2i} \cdot F_{2i-2} = 1, F_{4i} = F_{2i} (F_{2i+1} + F_{2i-1}), | ||
+ | F_{4i – 2} = F_{2i-1}(2F_{2i} - F_{2i-1})</cmath> and get <cmath>y_i = F_{2i} F_{2i-1}.</cmath> | ||
+ | |||
+ | We use the identities <cmath>F_{4i-1}= F_{2i}^2 + F_{2i-1}^2, F_{2i-1}^2 - F_{2i} \cdot F_{2i-2} = 1,</cmath> | ||
+ | and get | ||
+ | <cmath>x_i = \frac{ 3y_i - 1 + F_{4i-1}}{2} = \frac{ F_{2i}(3F_{2i-1} + F_{2i} +F_{2i-2})}{2} = F_{2i} \cdot F_{2i+1}.</cmath> | ||
+ | |||
+ | <cmath>\begin{array}{c|c|c|c|c|c|c|c} | ||
+ | & & & & & & & \\ [-2ex] | ||
+ | \boldsymbol{i} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ [0.5ex] \hline | ||
+ | & & & & & & & \\ [-1.5ex] | ||
+ | \boldsymbol{u_i} & 1 & 4 & 11 & 29 & 76 & 199 & 521 \\ [1ex] | ||
+ | \boldsymbol{v_i} & 1 & 2 & 5 & 13 & 34 & 89 & 233 \\ [1ex] | ||
+ | \boldsymbol{x_i} & 2 & 15 & 104 & 714 & 4895 & 33552 & 229970 \\ [1ex] | ||
+ | \boldsymbol{y_i} & 1 & 6 & 40 & 273 & 1870 & 12816 & 87841 \\ [1ex] | ||
+ | \end{array}</cmath> | ||
+ | <cmath>\binom{15}{5} = \binom{14}{6} = 3003</cmath> | ||
+ | <cmath>\binom{104}{39} = \binom{103}{40} = 61218182743304701891431482520</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Equation of the form== |
Latest revision as of 07:28, 20 April 2023
Pell's equation is any Diophantine equation of the form where is a given positive nonsquare integer, and integer solutions are sought for and
Denote the sequence of solutions It is clear that
During the solution we need:
a) to construct a recurrent sequence
b) to prove that the equation has no other integer solutions.
Contents
Equation of the form
Prove that all positive integer solutions of the equation can be found using recursively transformation of the pare
Proof
Let integers are the solution of the equation
Then
Therefore integers are the solution of the given equation. If then
Suppose that the pare of the positive integers is the solution different from founded in
Let
then therefore integers are the solution of the given equation.
Similarly
There is no integer solution if is impossible. So
There is no member in the sequence hence it is infinitely decreasing sequence of natural numbers. There is no such sequence. Contradiction.
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation can be found using recursively transformation of the pare In another form
Proof
It is the form of Pell's equation, therefore
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation can be found using recursively transformation of the pare
Proof
The solution is similar to that discussed in the previous section.
vladimir.shelomovskii@gmail.com, vvsss
Pythagorean triangles with almost equal legs
Find all triangles with integer sides one leg of which is more than the other.
Find all natural solutions of the equation
Solution
All positive integer solutions of the equation can be found using recursively transformation of the pare
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that the equation have not any solution.
Proof
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation can be found using recursively transformation of the pares and .
Proof
Let integers are the solution of the equation
Then
Therefore integers are the solution of the given equation. The pare of the positive integers is the solution different from founded in
Let
then therefore integers are the solution of the given equation.
Similarly
If then
There is no member in the sequence hence it is infinitely decreasing sequence of natural numbers. There is no such sequence. Contradiction.
We need to check (no solution), but gives the integer solution, so there is the second sequence of the integer solutions vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation are They can be found using recursively transformation of the pares
Proof Let the pare of the positive integers be the solution of given equation and Then
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation are They can be found using recursively transformation of the pares
vladimir.shelomovskii@gmail.com, vvsss
Equation of the form
Prove that all positive integer solutions of the equation are It is clear that solutions can be found using recursively transformation of the pare
One can use the small transform for understanding
vladimir.shelomovskii@gmail.com, vvsss
Equation for binomial coefficients
Find all positive integer solutions of equation
Solution It is known that every real quadratic form under a linear change of variables may be transformed in a "diagonal form".
where L is Lucas number, It is clear that so sequence of Lucas numbers modulo is periodic, the period is and the numbers with index (only these numbers) are modulo
Therefore only numbers are integer.
We use the identities and get
We use the identities and get
vladimir.shelomovskii@gmail.com, vvsss