Difference between revisions of "2000 SMT/Algebra Problems/Problem 2"
(→Solution 1 - SUBMITTED BY HOWDOI_YT) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | Problem 2 | + | ==Problem 2== |
− | Evaluate 2000^3 - 1999(2000^2) - 1999^2(2000) + 1999^3 | + | Evaluate <math>2000^3 - 1999(2000^2) - 1999^2(2000) + 1999^3</math> |
− | Solution 1 - | + | ==Solution 1 - Submitted by howdoi_yt== |
− | I can | + | |
− | 2000^3 - 2000^2(2000-1) - 1999^2(1999+1) + 1999^3 = 2000^3 - 2000^3 + 2000^2 - 1999^3 - 1999^2 + 1999^3 = 2000^2 - 1999^2 = (2000 - 1999)(2000 + 1999) = | + | I can rewrite the first <math>1999</math> as <math>(2000-1)</math>, and the third <math>2000</math> as <math>(1999+1)</math>; |
+ | |||
+ | <math>2000^3 - 2000^2(2000-1) - 1999^2(1999+1) + 1999^3</math> | ||
+ | |||
+ | <math>= 2000^3 - 2000^3 + 2000^2 - 1999^3 - 1999^2 + 1999^3</math> | ||
+ | |||
+ | <math>= 2000^2 - 1999^2</math> | ||
+ | |||
+ | <math>= (2000 - 1999)(2000 + 1999)</math> | ||
+ | |||
+ | <math>= 3999 \qquad \blacksquare</math> |
Latest revision as of 14:14, 18 April 2023
Problem 2
Evaluate
Solution 1 - Submitted by howdoi_yt
I can rewrite the first as , and the third as ;