Difference between revisions of "2000 SMT/Algebra Problems/Problem 2"

Line 1: Line 1:
Problem 2
+
==Problem 2==
  
Evaluate 2000^3 - 1999(2000^2) - 1999^2(2000) + 1999^3
+
Evaluate <math>2000^3 - 1999(2000^2) - 1999^2(2000) + 1999^3</math>
  
Solution 1 - SUBMITTED BY HOWDOI_YT
+
==Solution 1 - SUBMITTED BY HOWDOI_YT==
  
I can write the first 1999 as 2000-1, and the 3rd 2000 as 1999+1;
+
I can write the first <math>1999</math> as <math>2000-1</math>, and the 3rd <math>2000</math> as <math>1999+1</math>;
2000^3 - 2000^2(2000-1) - 1999^2(1999+1) + 1999^3 = 2000^3 - 2000^3 + 2000^2 - 1999^3 - 1999^2 + 1999^3 = 2000^2 - 1999^2 = (2000 - 1999)(2000 + 1999) = **3999** \qed
+
<math>2000^3 - 2000^2(2000-1) - 1999^2(1999+1) + 1999^3</math>
(oml i just realized how bad this looks someone help me edit it lmao)
+
<math>= 2000^3 - 2000^3 + 2000^2 - 1999^3 - 1999^2 + 1999^3</math>
 +
<math>= 2000^2 - 1999^2</math>
 +
<math>= (2000 - 1999)(2000 + 1999)</math>
 +
<math>= 3999 \blacksquare</math>

Revision as of 14:13, 18 April 2023

Problem 2

Evaluate $2000^3 - 1999(2000^2) - 1999^2(2000) + 1999^3$

Solution 1 - SUBMITTED BY HOWDOI_YT

I can write the first $1999$ as $2000-1$, and the 3rd $2000$ as $1999+1$; $2000^3 - 2000^2(2000-1) - 1999^2(1999+1) + 1999^3$ $= 2000^3 - 2000^3 + 2000^2 - 1999^3 - 1999^2 + 1999^3$ $= 2000^2 - 1999^2$ $= (2000 - 1999)(2000 + 1999)$ $= 3999 \blacksquare$