Difference between revisions of "2009 AMC 8 Problems/Problem 12"

(Video Solution)
 
(14 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?
+
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?  
  
 
<asy>
 
<asy>
Line 10: Line 10:
 
label("$1$",(0,.5));
 
label("$1$",(0,.5));
 
label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2));
 
label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2));
label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]
+
label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
[asy]unitsize(30);  
+
<asy>
 +
unitsize(30);  
 
draw(unitcircle);
 
draw(unitcircle);
 
draw((0,0)--(0,-1));
 
draw((0,0)--(0,-1));
Line 20: Line 21:
 
label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
 
label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
  
<math> \textbf{(A)}\ \frac {1}{2} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {3}{4} \qquad \textbf{(D)}\ \frac {7}{9} \qquad \textbf{(E)}\ \frac {5}{6}</math>
+
<math> \textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6} </math>
 +
 
 +
 
 +
==Solution==
 +
The possible sums are
 +
<cmath>\begin{tabular}{c|ccc}
 +
& 1 & 3 & 5 \\ \hline
 +
2 & 3 & 5 & 7 \\
 +
4 & 5 & 7 & 9 \\
 +
6 & 7 & 9 & 11
 +
\end{tabular}</cmath>
 +
 
 +
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.
 +
 
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=NPTaWKEkaHs    ~David
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2009|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Latest revision as of 18:36, 15 April 2023

Problem

The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?

[asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$1$",(0,.5)); label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy] [asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$2$",(0,.5)); label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]

$\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6}$


Solution

The possible sums are \[\begin{tabular}{c|ccc} & 1 & 3 & 5 \\ \hline 2 & 3 & 5 & 7 \\ 4 & 5 & 7 & 9 \\ 6 & 7 & 9 & 11 \end{tabular}\]

Only $9$ is not prime, so there are $7$ prime numbers and $9$ total numbers for a probability of $\boxed{\textbf{(D)}\ \frac79}$.

Video Solution

https://www.youtube.com/watch?v=NPTaWKEkaHs ~David

See Also

2009 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png