Difference between revisions of "1961 AHSME Problems"
(Created page with "== Problem 1== When simplified, <math>(-\frac{1}{125})^{-2/3}</math> becomes: <math>\textbf{(A)}\ \frac{1}{25} \qquad \textbf{(B)}\ -\frac{1}{25} \qquad \textbf{(C)}\ 25\qquad ...") |
Robotman1717 (talk | contribs) m (→Problem 38) |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{AHSC 40 Problems | ||
+ | |year = 1961 | ||
+ | }} | ||
== Problem 1== | == Problem 1== | ||
Line 6: | Line 9: | ||
\textbf{(B)}\ -\frac{1}{25} \qquad | \textbf{(B)}\ -\frac{1}{25} \qquad | ||
\textbf{(C)}\ 25\qquad | \textbf{(C)}\ 25\qquad | ||
− | \textbf{(D)}\ -25 | + | \textbf{(D)}\ -25\qquad |
− | \textbf{(E)}\ 25\sqrt{-1 | + | \textbf{(E)}\ 25\sqrt{-1}</math> |
[[1961 AHSME Problems/Problem 1|Solution]] | [[1961 AHSME Problems/Problem 1|Solution]] | ||
Line 18: | Line 21: | ||
\textbf{(B)}\ \frac{30r}{a}\qquad | \textbf{(B)}\ \frac{30r}{a}\qquad | ||
\textbf{(C)}\ \frac{30a}{r}\qquad | \textbf{(C)}\ \frac{30a}{r}\qquad | ||
− | \textbf{(D)}\ \frac{10r}{a | + | \textbf{(D)}\ \frac{10r}{a}\qquad |
− | \textbf{(E)}\ \frac{10a}{r | + | \textbf{(E)}\ \frac{10a}{r} </math> |
[[1961 AHSME Problems/Problem 2|Solution]] | [[1961 AHSME Problems/Problem 2|Solution]] | ||
Line 30: | Line 33: | ||
\textbf{(B)}\ -\frac{2}{3}\qquad | \textbf{(B)}\ -\frac{2}{3}\qquad | ||
\textbf{(C)}\ -\frac{3}{2} \qquad | \textbf{(C)}\ -\frac{3}{2} \qquad | ||
− | \textbf{(D)}\ 6 | + | \textbf{(D)}\ 6\qquad |
− | \textbf{(E)}\ -6 | + | \textbf{(E)}\ -6 </math> |
[[1961 AHSME Problems/Problem 3|Solution]] | [[1961 AHSME Problems/Problem 3|Solution]] | ||
Line 44: | Line 47: | ||
\textbf{(B)}\ \text{Multiplication} \qquad | \textbf{(B)}\ \text{Multiplication} \qquad | ||
\textbf{(C)}\ \text{Division} \qquad\\ | \textbf{(C)}\ \text{Division} \qquad\\ | ||
− | \textbf{(D)}\ \text{Extraction of a positive integral root | + | \textbf{(D)}\ \text{Extraction of a positive integral root}\qquad |
− | \textbf{(E)}\text{None of these} | + | \textbf{(E)}\ \text{None of these} </math> |
[[1961 AHSME Problems/Problem 4|Solution]] | [[1961 AHSME Problems/Problem 4|Solution]] | ||
Line 56: | Line 59: | ||
\textbf{(B)}\ (x-1)^4 \qquad | \textbf{(B)}\ (x-1)^4 \qquad | ||
\textbf{(C)}\ x^4 \qquad | \textbf{(C)}\ x^4 \qquad | ||
− | \textbf{(D)}\ (x+1)^4 | + | \textbf{(D)}\ (x+1)^4 \qquad |
− | \textbf{(E)}\ x^4+1 | + | \textbf{(E)}\ x^4+1 </math> |
[[1961 AHSME Problems/Problem 5|Solution]] | [[1961 AHSME Problems/Problem 5|Solution]] | ||
Line 68: | Line 71: | ||
\textbf{(B)}\ \log{2} \qquad | \textbf{(B)}\ \log{2} \qquad | ||
\textbf{(C)}\ 1 \qquad | \textbf{(C)}\ 1 \qquad | ||
− | \textbf{(D)}\ 0 | + | \textbf{(D)}\ 0\qquad |
− | \textbf{(E)}\ -1 | + | \textbf{(E)}\ -1 </math> |
[[1961 AHSME Problems/Problem 6|Solution]] | [[1961 AHSME Problems/Problem 6|Solution]] | ||
Line 80: | Line 83: | ||
\textbf{(B)}\ -\frac{15}{x}\qquad | \textbf{(B)}\ -\frac{15}{x}\qquad | ||
\textbf{(C)}\ -\frac{6x^2}{a^9} \qquad | \textbf{(C)}\ -\frac{6x^2}{a^9} \qquad | ||
− | \textbf{(D)}\ \frac{20}{a^3 | + | \textbf{(D)}\ \frac{20}{a^3}\qquad |
− | \textbf{(E)}\ -\frac{20}{a^3 | + | \textbf{(E)}\ -\frac{20}{a^3}</math> |
[[1961 AHSME Problems/Problem 7|Solution]] | [[1961 AHSME Problems/Problem 7|Solution]] | ||
Line 91: | Line 94: | ||
<math>\textbf{(A)}\ C_1+C_2=A+B \qquad | <math>\textbf{(A)}\ C_1+C_2=A+B \qquad | ||
− | \textbf{(B)}\ C_1-C_2=B-A \qquad | + | \textbf{(B)}\ C_1-C_2=B-A \qquad\\ |
− | \textbf{(C)}\ C_1-C_2=A-B | + | \textbf{(C)}\ C_1-C_2=A-B \qquad |
− | \textbf{(D)}\ C_1+C_2=B-A | + | \textbf{(D)}\ C_1+C_2=B-A\qquad |
− | \textbf{(E)}\ C_1-C_2=A+B | + | \textbf{(E)}\ C_1-C_2=A+B</math> |
[[1961 AHSME Problems/Problem 8|Solution]] | [[1961 AHSME Problems/Problem 8|Solution]] | ||
Line 103: | Line 106: | ||
If <math>r</math> equals the product of <math>a^b</math> by <math>x^b</math>, then <math>x</math> equals: | If <math>r</math> equals the product of <math>a^b</math> by <math>x^b</math>, then <math>x</math> equals: | ||
− | <math>\textbf{(A)} a\qquad | + | <math>\textbf{(A)}\ a \qquad |
\textbf{(B)}\ 2a \qquad | \textbf{(B)}\ 2a \qquad | ||
\textbf{(C)}\ 4a \qquad | \textbf{(C)}\ 4a \qquad | ||
− | \textbf{(D)}\ 2 | + | \textbf{(D)}\ 2\qquad |
− | \textbf{(E)}\ 4 | + | \textbf{(E)}\ 4 </math> |
[[1961 AHSME Problems/Problem 9|Solution]] | [[1961 AHSME Problems/Problem 9|Solution]] | ||
Line 119: | Line 122: | ||
\textbf{(B)}\ \sqrt{28} \qquad | \textbf{(B)}\ \sqrt{28} \qquad | ||
\textbf{(C)}\ 6 \qquad | \textbf{(C)}\ 6 \qquad | ||
− | \textbf{(D)}\ \sqrt{63 | + | \textbf{(D)}\ \sqrt{63} \qquad |
− | \textbf{(E)}\ \sqrt{98 | + | \textbf{(E)}\ \sqrt{98}</math> |
[[1961 AHSME Problems/Problem 10|Solution]] | [[1961 AHSME Problems/Problem 10|Solution]] | ||
Line 132: | Line 135: | ||
\textbf{(B)}\ 40.5 \qquad | \textbf{(B)}\ 40.5 \qquad | ||
\textbf{(C)}\ 40\qquad | \textbf{(C)}\ 40\qquad | ||
− | \textbf{(D)}\ 39\frac{7}{8 | + | \textbf{(D)}\ 39\frac{7}{8} \qquad |
− | \textbf{(E)}\ \text{not determined by the given information | + | \textbf{(E)}\ \text{not determined by the given information}</math> |
[[1961 AHSME Problems/Problem 11|Solution]] | [[1961 AHSME Problems/Problem 11|Solution]] | ||
Line 144: | Line 147: | ||
\textbf{(B)}\ \sqrt[7]{2}\qquad | \textbf{(B)}\ \sqrt[7]{2}\qquad | ||
\textbf{(C)}\ \sqrt[8]{2}\qquad | \textbf{(C)}\ \sqrt[8]{2}\qquad | ||
− | \textbf{(D)}\ \sqrt[9]{2 | + | \textbf{(D)}\ \sqrt[9]{2}\qquad |
− | \textbf{(E)}\ \sqrt[10]{2 | + | \textbf{(E)}\ \sqrt[10]{2}</math> |
[[1961 AHSME Problems/Problem 12|Solution]] | [[1961 AHSME Problems/Problem 12|Solution]] | ||
Line 157: | Line 160: | ||
\textbf{(B)}\ t^2+t\qquad | \textbf{(B)}\ t^2+t\qquad | ||
\textbf{(C)}\ |t^2+t|\qquad | \textbf{(C)}\ |t^2+t|\qquad | ||
− | \textbf{(D)}\ t\sqrt{t^2+1 | + | \textbf{(D)}\ t\sqrt{t^2+1}\qquad |
− | \textbf{(E)}\ |t|\sqrt{1+t^2 | + | \textbf{(E)}\ |t|\sqrt{1+t^2}</math> |
[[1961 AHSME Problems/Problem 13|Solution]] | [[1961 AHSME Problems/Problem 13|Solution]] | ||
Line 170: | Line 173: | ||
\textbf{(B)}\ \frac{1}{2}\sqrt{2K}\qquad | \textbf{(B)}\ \frac{1}{2}\sqrt{2K}\qquad | ||
\textbf{(C)}\ \frac{1}{3}\sqrt{3K}\qquad | \textbf{(C)}\ \frac{1}{3}\sqrt{3K}\qquad | ||
− | \textbf{(D)}\ \frac{1}{4}\sqrt{4K | + | \textbf{(D)}\ \frac{1}{4}\sqrt{4K}\qquad |
− | \textbf{(E)}\ \text{None of these are correct | + | \textbf{(E)}\ \text{None of these are correct}</math> |
[[1961 AHSME Problems/Problem 14|Solution]] | [[1961 AHSME Problems/Problem 14|Solution]] | ||
Line 183: | Line 186: | ||
\textbf{(B)}\ \frac{y^3}{x^2}\qquad | \textbf{(B)}\ \frac{y^3}{x^2}\qquad | ||
\textbf{(C)}\ \frac{x^2}{y^3}\qquad | \textbf{(C)}\ \frac{x^2}{y^3}\qquad | ||
− | \textbf{(D)}\ \frac{y^2}{x^3 | + | \textbf{(D)}\ \frac{y^2}{x^3}\qquad |
− | \textbf{(E)}\ y | + | \textbf{(E)}\ y</math> |
[[1961 AHSME Problems/Problem 15|Solution]] | [[1961 AHSME Problems/Problem 15|Solution]] | ||
Line 196: | Line 199: | ||
\textbf{(B)}\ \frac{bh}{2h+2m}\qquad | \textbf{(B)}\ \frac{bh}{2h+2m}\qquad | ||
\textbf{(C)}\ \frac{b(2m+h)}{m+h}\qquad | \textbf{(C)}\ \frac{b(2m+h)}{m+h}\qquad | ||
− | \textbf{(D)}\ \frac{b(m+h)}{2m+h | + | \textbf{(D)}\ \frac{b(m+h)}{2m+h}\qquad |
− | \textbf{(E)}\ \frac{b(2m+h)}{2(h+m) | + | \textbf{(E)}\ \frac{b(2m+h)}{2(h+m)}</math> |
[[1961 AHSME Problems/Problem 16|Solution]] | [[1961 AHSME Problems/Problem 16|Solution]] | ||
Line 205: | Line 208: | ||
In the base ten number system the number <math>526</math> means <math>5 \times 10^2+2 \times 10 + 6</math>. | In the base ten number system the number <math>526</math> means <math>5 \times 10^2+2 \times 10 + 6</math>. | ||
In the Land of Mathesis, however, numbers are written in the base <math>r</math>. | In the Land of Mathesis, however, numbers are written in the base <math>r</math>. | ||
− | + | Jones purchases an automobile there for <math>440</math> monetary units (abbreviated m.u). | |
He gives the salesman a <math>1000</math> m.u bill, and receives, in change, <math>340</math> m.u. The base <math>r</math> is: | He gives the salesman a <math>1000</math> m.u bill, and receives, in change, <math>340</math> m.u. The base <math>r</math> is: | ||
Line 211: | Line 214: | ||
\textbf{(B)}\ 5\qquad | \textbf{(B)}\ 5\qquad | ||
\textbf{(C)}\ 7\qquad | \textbf{(C)}\ 7\qquad | ||
− | \textbf{(D)}\ 8 | + | \textbf{(D)}\ 8\qquad |
− | \textbf{(E)}\ 12 | + | \textbf{(E)}\ 12 </math> |
[[1961 AHSME Problems/Problem 17|Solution]] | [[1961 AHSME Problems/Problem 17|Solution]] | ||
Line 225: | Line 228: | ||
\textbf{(B)}\ -1 \qquad | \textbf{(B)}\ -1 \qquad | ||
\textbf{(C)}\ 0 \qquad | \textbf{(C)}\ 0 \qquad | ||
− | \textbf{(D)}\ 1 | + | \textbf{(D)}\ 1\qquad |
− | \textbf{(E)}\ 12 | + | \textbf{(E)}\ 12 </math> |
[[1961 AHSME Problems/Problem 18|Solution]] | [[1961 AHSME Problems/Problem 18|Solution]] | ||
Line 234: | Line 237: | ||
Consider the graphs of <math>y=2\log{x}</math> and <math>y=\log{2x}</math>. We may say that: | Consider the graphs of <math>y=2\log{x}</math> and <math>y=\log{2x}</math>. We may say that: | ||
− | <math>\textbf{(A)}\ \text{They do not intersect}\qquad\\ | + | <math>\textbf{(A)}\ \text{They do not intersect}\qquad \\ |
− | \textbf{(B)}\ \text{They intersect at 1 point only}\qquad\\ | + | \textbf{(B)}\ \text{They intersect at 1 point only}\qquad \\ |
− | \textbf{(C)}\ \text{They intersect at 2 points only} \qquad\\ | + | \textbf{(C)}\ \text{They intersect at 2 points only} \qquad \\ |
− | \textbf{(D)}\ \text{They intersect at a finite number of points but greater than 2 }\qquad\\ | + | \textbf{(D)}\ \text{They intersect at a finite number of points but greater than 2} \qquad \\ |
− | \textbf{(E)}\ \text{They coincide | + | \textbf{(E)}\ \text{They coincide} </math> |
[[1961 AHSME Problems/Problem 19|Solution]] | [[1961 AHSME Problems/Problem 19|Solution]] | ||
Line 249: | Line 252: | ||
\textbf{(B)}\ \text{II and III}\qquad | \textbf{(B)}\ \text{II and III}\qquad | ||
\textbf{(C)}\ \text{I and III}\qquad | \textbf{(C)}\ \text{I and III}\qquad | ||
− | \textbf{(D)}\ \text{III and IV | + | \textbf{(D)}\ \text{III and IV}\qquad |
− | \textbf{(E)}\ \text{I and IV | + | \textbf{(E)}\ \text{I and IV}</math> |
[[1961 AHSME Problems/Problem 20|Solution]] | [[1961 AHSME Problems/Problem 20|Solution]] | ||
Line 262: | Line 265: | ||
\textbf{(B)}\ \frac{1}{8}\qquad | \textbf{(B)}\ \frac{1}{8}\qquad | ||
\textbf{(C)}\ \frac{1}{9}\qquad | \textbf{(C)}\ \frac{1}{9}\qquad | ||
− | \textbf{(D)}\ \frac{1}{12 | + | \textbf{(D)}\ \frac{1}{12}\qquad |
− | \textbf{(E)}\ \frac{1}{16 | + | \textbf{(E)}\ \frac{1}{16}</math> |
[[1961 AHSME Problems/Problem 21|Solution]] | [[1961 AHSME Problems/Problem 21|Solution]] | ||
Line 274: | Line 277: | ||
\textbf{(B)}\ 3x^2-4\qquad | \textbf{(B)}\ 3x^2-4\qquad | ||
\textbf{(C)}\ 3x^2+4\qquad | \textbf{(C)}\ 3x^2+4\qquad | ||
− | \textbf{(D)}\ 3x-4 | + | \textbf{(D)}\ 3x-4 \qquad |
− | \textbf{(E)}\ 3x+4 | + | \textbf{(E)}\ 3x+4 </math> |
[[1961 AHSME Problems/Problem 22|Solution]] | [[1961 AHSME Problems/Problem 22|Solution]] | ||
Line 287: | Line 290: | ||
\textbf{(B)}\ 70\qquad | \textbf{(B)}\ 70\qquad | ||
\textbf{(C)}\ 75\qquad | \textbf{(C)}\ 75\qquad | ||
− | \textbf{(D)}\ 80 | + | \textbf{(D)}\ 80\qquad |
− | \textbf{(E)}\ 85 | + | \textbf{(E)}\ 85 </math> |
[[1961 AHSME Problems/Problem 23|Solution]] | [[1961 AHSME Problems/Problem 23|Solution]] | ||
Line 295: | Line 298: | ||
Thirty-one books are arranged from left to right in order of increasing prices. | Thirty-one books are arranged from left to right in order of increasing prices. | ||
− | The price of each book differs by | + | The price of each book differs by <math>\textdollar{2}</math> from that of each adjacent book. |
For the price of the book at the extreme right a customer can buy the middle book and the adjacent one. Then: | For the price of the book at the extreme right a customer can buy the middle book and the adjacent one. Then: | ||
− | <math>\textbf{(A)}\ \text{The adjacent book referred to is at the left of the middle book}\qquad | + | <math>\textbf{(A)}\ \text{The adjacent book referred to is at the left of the middle book}\qquad \\ |
− | \textbf{(B)}\ \text{The middle book sells for | + | \textbf{(B)}\ \text{The middle book sells for \textdollar 36} \qquad \\ |
− | \textbf{(C)}\ \text{The cheapest book sells for | + | \textbf{(C)}\ \text{The cheapest book sells for \textdollar4} \qquad \\ |
− | \textbf{(D)}\ \text{The most expensive book sells for | + | \textbf{(D)}\ \text{The most expensive book sells for \textdollar64 } \qquad \\ |
\textbf{(E)}\ \text{None of these is correct } </math> | \textbf{(E)}\ \text{None of these is correct } </math> | ||
Line 314: | Line 317: | ||
\textbf{(B)}\ 26\frac{1}{3}\qquad | \textbf{(B)}\ 26\frac{1}{3}\qquad | ||
\textbf{(C)}\ 30\qquad | \textbf{(C)}\ 30\qquad | ||
− | \textbf{(D)}\ 40 | + | \textbf{(D)}\ 40\qquad |
− | \textbf{(E)}\ \text{Not determined by the information given | + | \textbf{(E)}\ \text{Not determined by the information given}</math> |
[[1961 AHSME Problems/Problem 25|Solution]] | [[1961 AHSME Problems/Problem 25|Solution]] | ||
Line 327: | Line 330: | ||
\textbf{(B)}\ -21.5 \qquad | \textbf{(B)}\ -21.5 \qquad | ||
\textbf{(C)}\ -20.5 \qquad | \textbf{(C)}\ -20.5 \qquad | ||
− | \textbf{(D)}\ 3 | + | \textbf{(D)}\ 3 \qquad |
− | \textbf{(E)}\ 3.5 | + | \textbf{(E)}\ 3.5 </math> |
[[1961 AHSME Problems/Problem 26|Solution]] | [[1961 AHSME Problems/Problem 26|Solution]] | ||
Line 349: | Line 352: | ||
== Problem 28== | == Problem 28== | ||
− | If <math>2137^{753}</math> is multiplied out, the units' digit | + | If <math>2137^{753}</math> is multiplied out, the units' digit in the final product is: |
<math>\textbf{(A)}\ 1\qquad | <math>\textbf{(A)}\ 1\qquad | ||
\textbf{(B)}\ 3\qquad | \textbf{(B)}\ 3\qquad | ||
\textbf{(C)}\ 5\qquad | \textbf{(C)}\ 5\qquad | ||
− | \textbf{(D)}\ 7 | + | \textbf{(D)}\ 7\qquad |
− | \textbf{(E)}\ 9 | + | \textbf{(E)}\ 9</math> |
[[1961 AHSME Problems/Problem 28|Solution]] | [[1961 AHSME Problems/Problem 28|Solution]] | ||
Line 364: | Line 367: | ||
<math>\textbf{(A)}\ x^2-bx-ac=0\qquad | <math>\textbf{(A)}\ x^2-bx-ac=0\qquad | ||
− | \textbf{(B)}\ x^2-bx+ac=0 \qquad | + | \textbf{(B)}\ x^2-bx+ac=0 \qquad\\ |
\textbf{(C)}\ x^2+3bx+ca+2b^2=0 \qquad | \textbf{(C)}\ x^2+3bx+ca+2b^2=0 \qquad | ||
− | \textbf{(D)}\ x^2+3bx-ca+2b^2=0 | + | \textbf{(D)}\ x^2+3bx-ca+2b^2=0 \qquad\\ |
− | \textbf{(E)}\ x^2+bx(2-a)+a^2c+b^2(a+1)=0 | + | \textbf{(E)}\ x^2+bx(2-a)+a^2c+b^2(a+1)=0</math> |
[[1961 AHSME Problems/Problem 29|Solution]] | [[1961 AHSME Problems/Problem 29|Solution]] | ||
Line 378: | Line 381: | ||
\textbf{(B)}\ \frac{2a+b}{a+1}\qquad | \textbf{(B)}\ \frac{2a+b}{a+1}\qquad | ||
\textbf{(C)}\ \frac{a+2b}{1+a}\qquad | \textbf{(C)}\ \frac{a+2b}{1+a}\qquad | ||
− | \textbf{(D)}\ \frac{2a+b}{1-a | + | \textbf{(D)}\ \frac{2a+b}{1-a}\qquad |
− | \textbf{(E)}\ \frac{a+2b}{1-a | + | \textbf{(E)}\ \frac{a+2b}{1-a}</math> |
[[1961 AHSME Problems/Problem 30|Solution]] | [[1961 AHSME Problems/Problem 30|Solution]] | ||
Line 391: | Line 394: | ||
\textbf{(B)}\ 3:4 \qquad | \textbf{(B)}\ 3:4 \qquad | ||
\textbf{(C)}\ 4:3 \qquad | \textbf{(C)}\ 4:3 \qquad | ||
− | \textbf{(D)}\ 3:1 | + | \textbf{(D)}\ 3:1 \qquad |
− | \textbf{(E)}\ 7:1 | + | \textbf{(E)}\ 7:1 </math> |
[[1961 AHSME Problems/Problem 31|Solution]] | [[1961 AHSME Problems/Problem 31|Solution]] | ||
Line 398: | Line 401: | ||
== Problem 32== | == Problem 32== | ||
− | A regular polygon of < | + | A regular polygon of <math>n</math> sides is inscribed in a circle of radius <math>R</math>. The area of the polygon is <math>3R^2</math>. Then <math>n</math> equals: |
− | < | + | <math>\textbf{(A)}\ 8\qquad |
\textbf{(B)}\ 10\qquad | \textbf{(B)}\ 10\qquad | ||
\textbf{(C)}\ 12\qquad | \textbf{(C)}\ 12\qquad | ||
− | \textbf{(D)}\ 15 | + | \textbf{(D)}\ 15\qquad |
− | \textbf{(E)}\ 18 | + | \textbf{(E)}\ 18 </math> |
[[1961 AHSME Problems/Problem 32|Solution]] | [[1961 AHSME Problems/Problem 32|Solution]] | ||
Line 410: | Line 413: | ||
== Problem 33== | == Problem 33== | ||
− | The number of solutions of < | + | The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is: |
− | < | + | <math>\textbf{(A)}\ 0\qquad |
\textbf{(B)}\ 1\qquad | \textbf{(B)}\ 1\qquad | ||
\textbf{(C)}\ 2\qquad | \textbf{(C)}\ 2\qquad | ||
− | \textbf{(D)}\ 3 | + | \textbf{(D)}\ 3\qquad |
− | \textbf{(E)}\ \text{More than three, but finite | + | \textbf{(E)}\ \text{More than three, but finite}</math> |
[[1961 AHSME Problems/Problem 33|Solution]] | [[1961 AHSME Problems/Problem 33|Solution]] | ||
Line 422: | Line 425: | ||
== Problem 34== | == Problem 34== | ||
− | Let S be the set of values assumed by the fraction < | + | Let S be the set of values assumed by the fraction <math>\frac{2x+3}{x+2}</math>. |
− | When < | + | When <math>x</math> is any member of the interval <math>x \ge 0</math>. If there exists a number <math>M</math> such that no number of the set <math>S</math> is greater than <math>M</math>, |
− | then < | + | then <math>M</math> is an upper bound of <math>S</math>. If there exists a number <math>m</math> such that such that no number of the set <math>S</math> is less than <math>m</math>, |
− | then < | + | then <math>m</math> is a lower bound of <math>S</math>. We may then say: |
− | < | + | <math>\textbf{(A)}\ \text{m is in S, but M is not in S}\qquad\\ |
\textbf{(B)}\ \text{M is in S, but m is not in S}\qquad\\ | \textbf{(B)}\ \text{M is in S, but m is not in S}\qquad\\ | ||
\textbf{(C)}\ \text{Both m and M are in S}\qquad\\ | \textbf{(C)}\ \text{Both m and M are in S}\qquad\\ | ||
\textbf{(D)}\ \text{Neither m nor M are in S}\qquad\\ | \textbf{(D)}\ \text{Neither m nor M are in S}\qquad\\ | ||
− | \textbf{(E)}\ \text{M does not exist either in or outside S} | + | \textbf{(E)}\ \text{M does not exist either in or outside S} </math> |
[[1961 AHSME Problems/Problem 34|Solution]] | [[1961 AHSME Problems/Problem 34|Solution]] | ||
Line 437: | Line 440: | ||
== Problem 35== | == Problem 35== | ||
− | The number < | + | The number <math>695</math> is to be written with a factorial base of numeration, that is, <math>695=a_1+a_2\times2!+a_3\times3!+ \ldots a_n \times n!</math> |
− | where < | + | where <math>a_1, a_2, a_3 ... a_n</math> are integers such that <math>0 \le a_k \le k,</math> and <math>n!</math> means <math>n(n-1)(n-2)...2 \times 1</math>. Find <math>a_4</math> |
− | < | + | <math>\textbf{(A)}\ 0\qquad |
\textbf{(B)}\ 1\qquad | \textbf{(B)}\ 1\qquad | ||
\textbf{(C)}\ 2\qquad | \textbf{(C)}\ 2\qquad | ||
− | \textbf{(D)}\ 3 | + | \textbf{(D)}\ 3\qquad |
− | \textbf{(E)}\ 4 | + | \textbf{(E)}\ 4 </math> |
[[1961 AHSME Problems/Problem 35|Solution]] | [[1961 AHSME Problems/Problem 35|Solution]] | ||
Line 450: | Line 453: | ||
== Problem 36== | == Problem 36== | ||
− | In < | + | In <math>\triangle ABC</math> the median from <math>A</math> is given perpendicular to the median from <math>B</math>. If <math>BC=7</math> and <math>AC=6</math>, find the length of <math>AB</math>. |
− | < | + | <math>\textbf{(A)}\ 4\qquad |
\textbf{(B)}\ \sqrt{17} \qquad | \textbf{(B)}\ \sqrt{17} \qquad | ||
\textbf{(C)}\ 4.25\qquad | \textbf{(C)}\ 4.25\qquad | ||
− | \textbf{(D)}\ 2\sqrt{5 | + | \textbf{(D)}\ 2\sqrt{5} \qquad |
− | \textbf{(E)}\ 4.5 | + | \textbf{(E)}\ 4.5 </math> |
[[1961 AHSME Problems/Problem 36|Solution]] | [[1961 AHSME Problems/Problem 36|Solution]] | ||
Line 462: | Line 465: | ||
== Problem 37== | == Problem 37== | ||
− | In racing over a distance < | + | In racing over a distance <math>d</math> at uniform speed, <math>A</math> can beat <math>B</math> by <math>20</math> yards, <math>B</math> can beat <math>C</math> by <math>10</math> yards, |
− | and < | + | and <math>A</math> can beat <math>C</math> by <math>28</math> yards. Then <math>d</math>, in yards, equals: |
− | < | + | <math>\textbf{(A)}\ \text{Not determined by the given information}\qquad |
\textbf{(B)}\ 58\qquad | \textbf{(B)}\ 58\qquad | ||
\textbf{(C)}\ 100\qquad | \textbf{(C)}\ 100\qquad | ||
− | \textbf{(D)}\ 116 | + | \textbf{(D)}\ 116\qquad |
− | \textbf{(E)}\ 120 | + | \textbf{(E)}\ 120</math> |
[[1961 AHSME Problems/Problem 37|Solution]] | [[1961 AHSME Problems/Problem 37|Solution]] | ||
Line 475: | Line 478: | ||
== Problem 38== | == Problem 38== | ||
− | < | + | <math>\triangle ABC</math> is inscribed in a semicircle of radius <math>r</math> so that its base <math>AB</math> coincides with diameter <math>AB</math>. |
− | Point < | + | Point <math>C</math> does not coincide with either <math>A</math> or <math>B</math>. Let <math>s=AC+BC</math>. Then, for all permissible positions of <math>C</math>: |
− | < | + | <math>\textbf{(A)}\ s^2\le8r^2\qquad |
\textbf{(B)}\ s^2=8r^2 \qquad | \textbf{(B)}\ s^2=8r^2 \qquad | ||
− | \textbf{(C)}\ s^2 \ge 8r^2 \qquad | + | \textbf{(C)}\ s^2 \ge 8r^2 \qquad\\ |
− | \textbf{(D)}\ s^2\le4r^2 | + | \textbf{(D)}\ s^2\le4r^2 \qquad |
− | \textbf{(E)}\ | + | \textbf{(E)}\ s^2=4r^2 </math> |
[[1961 AHSME Problems/Problem 38|Solution]] | [[1961 AHSME Problems/Problem 38|Solution]] | ||
Line 488: | Line 491: | ||
== Problem 39== | == Problem 39== | ||
− | Any five points are taken inside or on a square with side length < | + | Any five points are taken inside or on a square with side length <math>1</math>. Let a be the smallest possible number with the |
property that it is always possible to select one pair of points from these five such that the distance between them | property that it is always possible to select one pair of points from these five such that the distance between them | ||
− | is equal to or less than < | + | is equal to or less than <math>a</math>. Then <math>a</math> is: |
− | < | + | <math>\textbf{(A)}\ \sqrt{3}/3\qquad |
\textbf{(B)}\ \sqrt{2}/2\qquad | \textbf{(B)}\ \sqrt{2}/2\qquad | ||
\textbf{(C)}\ 2\sqrt{2}/3\qquad | \textbf{(C)}\ 2\sqrt{2}/3\qquad | ||
− | \textbf{(D)}\ 1 | + | \textbf{(D)}\ 1 \qquad |
− | \textbf{(E)}\ \sqrt{2 | + | \textbf{(E)}\ \sqrt{2}</math> |
[[1961 AHSME Problems/Problem 39|Solution]] | [[1961 AHSME Problems/Problem 39|Solution]] | ||
Line 502: | Line 505: | ||
== Problem 40== | == Problem 40== | ||
− | Find the minimum value of < | + | Find the minimum value of <math>\sqrt{x^2+y^2}</math> if <math>5x+12y=60</math>. |
− | < | + | <math>\textbf{(A)}\ \frac{60}{13}\qquad |
\textbf{(B)}\ \frac{13}{5}\qquad | \textbf{(B)}\ \frac{13}{5}\qquad | ||
\textbf{(C)}\ \frac{13}{12}\qquad | \textbf{(C)}\ \frac{13}{12}\qquad | ||
− | \textbf{(D)}\ 1 | + | \textbf{(D)}\ 1\qquad |
− | \textbf{(E)}\ 0 | + | \textbf{(E)}\ 0 </math> |
[[1961 AHSME Problems/Problem 40|Solution]] | [[1961 AHSME Problems/Problem 40|Solution]] | ||
== See also == | == See also == | ||
− | + | ||
− | |||
* [[AMC 12 Problems and Solutions]] | * [[AMC 12 Problems and Solutions]] | ||
* [[Mathematics competition resources]] | * [[Mathematics competition resources]] | ||
+ | |||
+ | {{AHSME 40p box|year=1961|before=[[1960 AHSME|1960 AHSC]]|after=[[1962 AHSME|1962 AHSC]]}} | ||
+ | |||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:33, 5 April 2023
1961 AHSC (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
- 31 Problem 31
- 32 Problem 32
- 33 Problem 33
- 34 Problem 34
- 35 Problem 35
- 36 Problem 36
- 37 Problem 37
- 38 Problem 38
- 39 Problem 39
- 40 Problem 40
- 41 See also
Problem 1
When simplified, becomes:
Problem 2
An automobile travels feet in seconds. If this rate is maintained for minutes, how many yards does it travel in minutes?
Problem 3
If the graphs of and are to meet at right angles, the value of is:
Problem 4
Let the set consisting of the squares of the positive integers be called ; thus is the set . If a certain operation on one or more members of the set always yields a member of the set, we say that the set is closed under that operation. Then is closed under:
Problem 5
Let . Then equals:
Problem 6
When simplified, becomes:
Problem 7
When simplified, the third term in the expansion of is:
Problem 8
Let the two base angles of a triangle be and , with larger than . The altitude to the base divides the vertex angle into two parts, and , with adjacent to side . Then:
Problem 9
Let be the result of doubling both the base and exponent of , and does not equal to . If equals the product of by , then equals:
Problem 10
Each side of is units. is the foot of the perpendicular dropped from on , and is the midpoint of . The length of , in the same unit, is:
Problem 11
Two tangents are drawn to a circle from an exterior point ; they touch the circle at points and respectively. A third tangent intersects segment in and in , and touches the circle at . If , then the perimeter of is
Problem 12
The first three terms of a geometric progression are . Find the fourth term.
Problem 13
The symbol means is a positive number or zero, and if is a negative number. For all real values of the expression is equal to?
Problem 14
A rhombus is given with one diagonal twice the length of the other diagonal. Express the side of the rhombus is terms of , where is the area of the rhombus in square inches.
Problem 15
If men working hours a day for days produce articles, then the number of articles (not necessarily an integer) produced by men working hours a day for days is:
Problem 16
An altitude of a triangle is increased by a length . How much must be taken from the corresponding base so that the area of the new triangle is one-half that of the original triangle?
Problem 17
In the base ten number system the number means . In the Land of Mathesis, however, numbers are written in the base . Jones purchases an automobile there for monetary units (abbreviated m.u). He gives the salesman a m.u bill, and receives, in change, m.u. The base is:
Problem 18
The yearly changes in the population census of a town for four consecutive years are, respectively, 25% increase, 25% increase, 25% decrease, 25% decrease. The net change over the four years, to the nearest percent, is:
Problem 19
Consider the graphs of and . We may say that:
Problem 20
The set of points satisfying the pair of inequalities and is contained entirely in quadrants:
Problem 21
Medians and of intersect in . The midpoint of is . Let the area of be times the area of . Then equals:
Problem 22
If is divisible by , then it is also divisible by:
Problem 23
Points and are both in the line segment and on the same side of its midpoint. divides in the ratio , and divides in the ratio . If , then the length of is:
Problem 24
Thirty-one books are arranged from left to right in order of increasing prices. The price of each book differs by from that of each adjacent book. For the price of the book at the extreme right a customer can buy the middle book and the adjacent one. Then:
Problem 25
is isosceles with base . Points and are respectively in and and such that . The number of degrees in is:
Problem 26
For a given arithmetic series the sum of the first terms is , and the sum of the next terms is . The first term in the series is:
Problem 27
Given two equiangular polygons and with different numbers of sides; each angle of is degrees and each angle of is degrees, where is an integer greater than . The number of possibilities for the pair is:
Problem 28
If is multiplied out, the units' digit in the final product is:
Problem 29
Let the roots of be and . The equation with roots and is:
Problem 30
If and , then ?
Problem 31
In the ratio is . The bisector of the exterior angle at intersects extended at ( is between and ). The ratio is:
Problem 32
A regular polygon of sides is inscribed in a circle of radius . The area of the polygon is . Then equals:
Problem 33
The number of solutions of , in which and are integers, is:
Problem 34
Let S be the set of values assumed by the fraction . When is any member of the interval . If there exists a number such that no number of the set is greater than , then is an upper bound of . If there exists a number such that such that no number of the set is less than , then is a lower bound of . We may then say:
Problem 35
The number is to be written with a factorial base of numeration, that is, where are integers such that and means . Find
Problem 36
In the median from is given perpendicular to the median from . If and , find the length of .
Problem 37
In racing over a distance at uniform speed, can beat by yards, can beat by yards, and can beat by yards. Then , in yards, equals:
Problem 38
is inscribed in a semicircle of radius so that its base coincides with diameter . Point does not coincide with either or . Let . Then, for all permissible positions of :
Problem 39
Any five points are taken inside or on a square with side length . Let a be the smallest possible number with the property that it is always possible to select one pair of points from these five such that the distance between them is equal to or less than . Then is:
Problem 40
Find the minimum value of if .
See also
1961 AHSC (Problems • Answer Key • Resources) | ||
Preceded by 1960 AHSC |
Followed by 1962 AHSC | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.