Difference between revisions of "1999 USAMO Problems/Problem 2"
(→Solution) |
m (→Solution: ; idk what to call it) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 12: | Line 12: | ||
Clearly <math>90^\circ \ge \frac{x+z}{2} > \frac{x-z}{2} \ge 0^\circ</math>. As sine is increasing over <math>[0, \pi/2]</math>, <math>|\sin \frac{x+z}{2}| > |\sin \frac{x-z}{2}|</math>. | Clearly <math>90^\circ \ge \frac{x+z}{2} > \frac{x-z}{2} \ge 0^\circ</math>. As sine is increasing over <math>[0, \pi/2]</math>, <math>|\sin \frac{x+z}{2}| > |\sin \frac{x-z}{2}|</math>. | ||
− | Similarly, <math>|\sin \frac{y+w}{2}| > |\sin \frac{y-w}{2}|</math>. The result now follows after multiplying the first inequality by <math>|\sin \frac{x-z}{2}|</math>, the second by <math>|\sin \frac{y-w}{2}|</math>, and adding. (Equality holds if and only if <math>x=z</math> and <math>y=w</math>.) | + | Similarly, <math>|\sin \frac{y+w}{2}| > |\sin \frac{y-w}{2}|</math>. The result now follows after multiplying the first inequality by <math>|\sin \frac{x-z}{2}|</math>, the second by <math>|\sin \frac{y-w}{2}|</math>, and adding. (Equality holds if and only if <math>x=z</math> and <math>y=w</math>, ie. <math>ABCD</math> is a parallelogram.) |
--[[User:Suli|Suli]] 11:23, 5 October 2014 (EDT) | --[[User:Suli|Suli]] 11:23, 5 October 2014 (EDT) |
Latest revision as of 10:11, 18 March 2023
Problem
Let be a cyclic quadrilateral. Prove that
Solution
Let arc of the circumscribed circle (which we assume WLOG has radius 0.5) have value , have , have , and have . Then our inequality reduces to, for :
This is equivalent to by sum-to-product and use of :
Clearly . As sine is increasing over , .
Similarly, . The result now follows after multiplying the first inequality by , the second by , and adding. (Equality holds if and only if and , ie. is a parallelogram.)
--Suli 11:23, 5 October 2014 (EDT)
See Also
1999 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.