Difference between revisions of "1956 AHSME Problems/Problem 3"

(Created page with "==Problem #3== ==Solution== ==See Also==")
 
(Solution)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem #3==
 
==Problem #3==
  
 +
The distance light travels in one year is approximately <math>5,870,000,000,000</math> miles. The distance light travels in <math>100</math> years is:
  
 +
<math>\textbf{(A)}\ 587\cdot10^8\text{ miles}\qquad
 +
\textbf{(B)}\ 587\cdot10^{10}\text{ miles}\qquad
 +
\textbf{(C)}\ 587\cdot10^{-10}\text{ miles} \\
 +
\textbf{(D)}\ 587\cdot10^{12} \text{ miles} \qquad
 +
\textbf{(E)}\ 587\cdot10^{ - 12} \text{ miles} </math>
  
 
==Solution==
 
==Solution==
 +
 +
The distance light travels in one year can also be written as <math>587\cdot10^{10}</math>. In 100 years, light will travel <math>(587\cdot10^{10})\cdot100=587\cdot10^{12}</math>.
 +
 +
Therefore, our answer is  <math>\boxed{\textbf{(D) }587\cdot10^{12}}</math>.
  
 
==See Also==
 
==See Also==
 +
 +
{{AHSME 50p box|year=1956|num-b=2|num-a=4}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 16:02, 14 March 2023

Problem #3

The distance light travels in one year is approximately $5,870,000,000,000$ miles. The distance light travels in $100$ years is:

$\textbf{(A)}\ 587\cdot10^8\text{ miles}\qquad \textbf{(B)}\ 587\cdot10^{10}\text{ miles}\qquad \textbf{(C)}\ 587\cdot10^{-10}\text{ miles} \\ \textbf{(D)}\ 587\cdot10^{12} \text{ miles} \qquad \textbf{(E)}\ 587\cdot10^{ - 12} \text{ miles}$

Solution

The distance light travels in one year can also be written as $587\cdot10^{10}$. In 100 years, light will travel $(587\cdot10^{10})\cdot100=587\cdot10^{12}$.

Therefore, our answer is $\boxed{\textbf{(D) }587\cdot10^{12}}$.

See Also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png