Difference between revisions of "2021 USAMO Problems/Problem 4"

(Change to the actual Q4)
m (Problem)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
A finite set <math>S</math> of positive integers has the property that, for each <math>s\in S</math>, and each positive integer <math>d</math> of <math>s</math>, there exists a unique element <math>t \in S</math> satisfying <math>\gcd(s,t)=d</math> (the elements <math>s</math> and <math>t</math> could be equal).
+
A finite set <math>S</math> of positive integers has the property that, for each <math>s\in S</math>, and each positive integer divisor <math>d</math> of <math>s</math>, there exists a unique element <math>t \in S</math> satisfying <math>\gcd(s,t)=d</math> (the elements <math>s</math> and <math>t</math> could be equal).
  
 
Given this information, find all possible values for the number of elements of <math>S</math>.
 
Given this information, find all possible values for the number of elements of <math>S</math>.

Latest revision as of 12:59, 3 March 2023

Problem

A finite set $S$ of positive integers has the property that, for each $s\in S$, and each positive integer divisor $d$ of $s$, there exists a unique element $t \in S$ satisfying $\gcd(s,t)=d$ (the elements $s$ and $t$ could be equal).

Given this information, find all possible values for the number of elements of $S$.