Difference between revisions of "Ceva I.2"
(Created page with "==Problem== *Let <math>M</math> be the midpoint of side <math>AB</math> of triangle <math>ABC</math>. Points <math>D</math> and <math>E</math> lie on line segments <math>BC</m...") |
(→Solution) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | + | <asy> | |
import olympiad; | import olympiad; | ||
size(12cm); | size(12cm); | ||
Line 9: | Line 9: | ||
pair A=origin, B=(12,0), C=(4,8); | pair A=origin, B=(12,0), C=(4,8); | ||
draw(A--B--C--cycle); | draw(A--B--C--cycle); | ||
− | dot(" | + | dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N); |
pair D=(7,5), E=(2.5,5); | pair D=(7,5), E=(2.5,5); | ||
− | dot(" | + | dot("$D$",D,NE); dot("$E$",E,NW); |
draw(D--E); | draw(D--E); | ||
path p = A--B; | path p = A--B; | ||
− | pair M=midpoint(p); dot(" | + | pair M=midpoint(p); dot("$M$",M,S); |
− | pair P=(4.5,0); dot(" | + | pair P=(4.5,0); dot("$P$",P,S); |
path x = E--M; path y = C--P; | path x = E--M; path y = C--P; | ||
draw(E--M, yellow+linewidth(1)); draw(C--P, yellow+linewidth(1)); | draw(E--M, yellow+linewidth(1)); draw(C--P, yellow+linewidth(1)); | ||
− | pair[] i = intersectionpoints(x,y); dot(" | + | pair[] i = intersectionpoints(x,y); dot("$X$",i[0],W); |
path g = D--P; path h = C--M; | path g = D--P; path h = C--M; | ||
draw(D--P, purple+linewidth(1)); draw(C--M, purple+linewidth(1)); | draw(D--P, purple+linewidth(1)); draw(C--M, purple+linewidth(1)); | ||
− | pair[] j = intersectionpoints(g,h); dot(" | + | pair[] j = intersectionpoints(g,h); dot("$Y$",j[0],W-dir(20)); |
draw(i[0]--j[0]--B, black+dashed+linewidth(0.5)); | draw(i[0]--j[0]--B, black+dashed+linewidth(0.5)); | ||
− | pair G=E+3.7*dir(125); dot(" | + | pair G=E+3.7*dir(125); dot("$G$",G,N); |
draw(E--G, black+dashed+linewidth(0.5)); draw(C--G, black+dashed+linewidth(0.5)); | draw(E--G, black+dashed+linewidth(0.5)); draw(C--G, black+dashed+linewidth(0.5)); | ||
− | + | </asy> | |
− | We want to prove <math>X,Y,B</math> collinear, so we consider from which which direction we want to prove this. We can prove <math>\angle XYC + \angle BYC = 180</math> to do it, but we don't know any angles, so that probably won't be much use. Instead, we can prove <math>CM, DP, XB</math> collinear, since the intersection of <math>CM</math> and <math>DP</math> is <math>Y</math>. So, let's consider Ceva's (a concurrency related formula) on <math>\triangle BCP</math>. | + | We want to prove <math>X,Y,B</math> [[collinear]], so we consider from which which direction we want to prove this. We can prove <math>\angle XYC + \angle BYC = 180</math> to do it, but we don't know any angles, so that probably won't be much use. Instead, we can prove <math>CM, DP, XB</math> collinear, since the intersection of <math>CM</math> and <math>DP</math> is <math>Y</math>. So, let's consider [[Ceva's Theorem]] (a concurrency related formula) on <math>\triangle BCP</math>. |
Let <math>AB = c, AC = b, BC = a</math>. That means <math>AM = MB = \frac{c}{2}</math>. There are a lot of unknowns here, so let further set <math>AP = x, CD = y</math>. We know that | Let <math>AB = c, AC = b, BC = a</math>. That means <math>AM = MB = \frac{c}{2}</math>. There are a lot of unknowns here, so let further set <math>AP = x, CD = y</math>. We know that | ||
<cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP}</cmath> | <cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP}</cmath> | ||
− | Now, if we extend <math>EM</math> through <math>E</math> and intersect the line at <math>C</math> parallel to <math>AB</math> at point <math>G</math>, we see <math>\triangle GEC \sim \triangle MEA</math>. Thus, <math>\dfrac{GC}{AM} = \dfrac{EC}{AE} = \dfrac{CD}{BD} \implies \dfrac{GC}{\frac{c}{2}} = \dfrac{y}{a-y} \implies GC = \dfrac{\frac{c}{2} \cdot y}{a-y}</math>. Using <math>\triangle GCX \sim \triangle MPX</math>, <math>\dfrac{CX}{XP} = \dfrac{GC}{PM} = \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}</math>. Thus, | + | Now, if we extend <math>EM</math> through <math>E</math> and intersect the line at <math>C</math> [[parallel]] to <math>AB</math> at point <math>G</math>, we see <math>\triangle GEC \sim \triangle MEA</math>. Thus, <math>\dfrac{GC}{AM} = \dfrac{EC}{AE} = \dfrac{CD}{BD} \implies \dfrac{GC}{\frac{c}{2}} = \dfrac{y}{a-y} \implies GC = \dfrac{\frac{c}{2} \cdot y}{a-y}</math>. Using <math>\triangle GCX \sim \triangle MPX</math>, <math>\dfrac{CX}{XP} = \dfrac{GC}{PM} = \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}</math>. Thus, |
<cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}=1</cmath> | <cmath>\dfrac{PM}{MB} \cdot \dfrac{BD}{DC} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{CX}{XP} = \dfrac{\frac{c}{2}-x}{\frac{c}{2}} \cdot \dfrac{a-y}{y} \cdot \dfrac{\frac{\frac{c}{2} \cdot y}{a-y}}{\frac{c}{2}-x}=1</cmath> | ||
+ | |||
+ | <math>\mathcal{QED}</math> |
Latest revision as of 15:38, 26 February 2023
Problem
- Let be the midpoint of side of triangle . Points and lie on line segments and , respectively, such that and are parallel. Point lies on line segment . Lines and intersect at and lines and meet at . Prove that are collinear.
Solution
We want to prove collinear, so we consider from which which direction we want to prove this. We can prove to do it, but we don't know any angles, so that probably won't be much use. Instead, we can prove collinear, since the intersection of and is . So, let's consider Ceva's Theorem (a concurrency related formula) on .
Let . That means . There are a lot of unknowns here, so let further set . We know that Now, if we extend through and intersect the line at parallel to at point , we see . Thus, . Using , . Thus,