Difference between revisions of "1976 AHSME Problems/Problem 3"

(Created page with "==Problem 3== The sum of the distances from one vertex of a square with sides of length <math>2</math> to the midpoints of each of the sides of the square is <math>\textbf{(...")
 
(Solution)
 
(3 intermediate revisions by one other user not shown)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
The lengths to the side are <math>1, \sqrt{2^2+1^2}, \sqrt{2^2+1^2}, 1</math>, respectively. Therefore, the sum is <math>2+2\sqrt{5}\Rightarrow \textbf{(E)}</math>.  
+
The lengths to the side are <math>1, \sqrt{2^2+1^2}, \sqrt{2^2+1^2}, 1</math>, respectively. Therefore, the sum is <math>\boxed{\textbf{(E) } 2+2\sqrt{5}}</math>.
 +
~MathJams
 +
 
  
==1976 AHSME Problems==
 
  
 
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}}
 
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}}

Latest revision as of 21:11, 6 February 2023

Problem 3

The sum of the distances from one vertex of a square with sides of length $2$ to the midpoints of each of the sides of the square is

$\textbf{(A) }2\sqrt{5}\qquad \textbf{(B) }2+\sqrt{3}\qquad \textbf{(C) }2+2\sqrt{3}\qquad \textbf{(D) }2+\sqrt{5}\qquad \textbf{(E) }2+2\sqrt{5}$

Solution

The lengths to the side are $1, \sqrt{2^2+1^2}, \sqrt{2^2+1^2}, 1$, respectively. Therefore, the sum is $\boxed{\textbf{(E) } 2+2\sqrt{5}}$. ~MathJams


1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
1975 AHSME
Followed by
1977 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions