Difference between revisions of "User:Temperal/The Problem Solver's Resource8"

(okay. I like the name power mean better, though. :))
(Minkowsky's Inequality: i)
Line 26: Line 26:
 
<math>{\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}</math>.
 
<math>{\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}</math>.
  
===Minkowsky's Inequality===
+
===Minkowski's Inequality===
  
 
Given real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following holds:
 
Given real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following holds:

Revision as of 14:16, 26 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 8.

Intermediate Number Theory

These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests. This will also cover diverging and converging series, and other such calculus-related topics.

Power Mean Inequality

Take a set of functions $m_j(a) = \left({\frac{\sum a_i^j}{n}}\right)^{1/j}$.

Note that $m_0$ does not exist. The geometric mean is $m_0 = \lim_{k \to 0} m_k$. For non-negative real numbers $a_1,a_2,\ldots,a_n$, the following holds:

$m_x \le m_y$ for reals $x<y$.

, if $m_2$ is the quadratic mean, $m_1$ is the arithmetic mean, $m_0$ the geometric mean, and $m_{-1}$ the harmonic mean.

Chebyshev's Inequality

Given real numbers $a_1 \ge a_2 \ge ... \ge a_n \ge 0$ and $b_1 \ge b_2 \ge ... \ge b_n$, we have

${\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}$.

Minkowski's Inequality

Given real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,\ldots,b_n$, the following holds:

$\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2} \ge \sqrt{\sum (a_i+b_i)^2}$

Nesbitt's Inequality

For all positive real numbers $a$, $b$ and $c$, the following holds:

${\frac{a}{b+c}} + {\frac{b}{c+a}} + {\frac{c}{a+b}} \ge {\frac{3}{2}}$.

Schur's inequality

Given positive real numbers $a,b,c$ and real $r$, the following holds:

$a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)\ge 0$.

Fermat-Euler Identitity

If $gcd(a,m)=1$, then $a^{\phi{m}}\equiv1\pmod{m}$, where $\phi{m}$ is the number of relatively prime numbers lower than $m$.

Gauss's Theorem

If $a|bc$ and $(a,b) = 1$, then $a|c$.

Diverging-Converging Theorem

A series $\sum_{i=0}^{\infty}S_i$ converges iff $\lim S_i=0$.

Errata

All quadratic residues are $0$ or $1\pmod{4}$and $0$, $1$, or $4$ $\pmod{8}$.


Back to page 7 | Continue to page 9