Difference between revisions of "2007 iTest Problems/Problem 17"
Katniss123 (talk | contribs) (→Solution) |
m (→Solution 2) |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
If <math>x</math> and <math>y</math> are acute angles such that <math>x+y=\frac{\pi}{4}</math> and <math>\tan{y}=\frac{1}{6}</math>, find the value of <math>\tan{x}</math>. | If <math>x</math> and <math>y</math> are acute angles such that <math>x+y=\frac{\pi}{4}</math> and <math>\tan{y}=\frac{1}{6}</math>, find the value of <math>\tan{x}</math>. | ||
+ | |||
+ | <math>\text{(A) }\frac{37\sqrt{2}-18}{71}\qquad | ||
+ | \text{(B) }\frac{35\sqrt{2}-6}{71}\qquad | ||
+ | \text{(C) }\frac{35\sqrt{3}+12}{33}\qquad | ||
+ | \text{(D) }\frac{37\sqrt{3}+24}{33}\qquad</math> | ||
+ | |||
+ | <math>\text{(E) }1\qquad | ||
+ | \text{(F) }\frac{5}{7}\qquad | ||
+ | \text{(G) }\frac{3}{7}\qquad | ||
+ | \text{(H) }6\qquad</math> | ||
+ | |||
+ | <math>\text{(I) }\frac{1}{6}\qquad | ||
+ | \text{(J) }\frac{1}{2}\qquad | ||
+ | \text{(K) }\frac{6}{7}\qquad | ||
+ | \text{(L) }\frac{4}{7}\qquad | ||
+ | \text{(M) }\sqrt{3}\qquad</math> | ||
+ | |||
+ | <math>\text{(N) }\frac{\sqrt{3}}{3}\qquad | ||
+ | \text{(O) }\frac{5}{6}\qquad | ||
+ | \text{(P) }\frac{2}{3}\qquad | ||
+ | \text{(Q) }\frac{1}{2007}\qquad</math> | ||
== Solution == | == Solution == | ||
− | + | From the second equation, we get that <math>y=\arctan\frac{1}{6}</math>. Plugging this into the first equation, we get: | |
+ | |||
+ | <math>x+\arctan\frac{1}{6}=\frac{\pi}{4}</math> | ||
+ | |||
+ | Taking the tangent of both sides, | ||
+ | |||
+ | <math>\tan(x+\arctan\frac{1}{6})=\tan\frac{\pi}{4}=1</math> | ||
+ | |||
+ | From the tangent addition formula, we then get: | ||
+ | |||
+ | <math>\frac{{\tan{x}+\frac{1}{6}}}{{1-\frac{1}{6}\tan{x}}}=1</math> | ||
+ | |||
+ | <math>\tan{x}+\frac{1}{6}=1-\frac{1}{6}\tan{x}</math>. | ||
+ | |||
+ | Rearranging and solving, we get | ||
+ | |||
+ | <math>\tan{x}=\boxed{\textbf{(F) } \frac{5}{7}}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | We will use complex numbers: <math>y</math> represents the complex number <math>6+i</math>, and <math>x+y=\frac{\pi}{4}</math> represents the fact <math>x\cdot y=1+i</math>, so dividing <math>1+i</math> by <math>6+i</math>, we get <math>\frac{7+5i}{56}</math>, which means <math>\tan{x}=\boxed{\textbf{(F) } \frac{5}{7}}</math> | ||
+ | |||
+ | ==See Also== | ||
+ | {{iTest box|year=2007|num-b=16|num-a=18}} | ||
+ | |||
+ | [[Category:Introductory Trigonometry Problems]] |
Latest revision as of 20:30, 4 February 2023
Contents
Problem
If and are acute angles such that and , find the value of .
Solution
From the second equation, we get that . Plugging this into the first equation, we get:
Taking the tangent of both sides,
From the tangent addition formula, we then get:
.
Rearranging and solving, we get
Solution 2
We will use complex numbers: represents the complex number , and represents the fact , so dividing by , we get , which means
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 16 |
Followed by: Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |