Difference between revisions of "2023 AMC 8 Problems/Problem 11"

(Some months have 31 days.)
Line 6: Line 6:
  
 
==Solution 1==
 
==Solution 1==
Note that <math>6.5</math> months is equivalent to <math>6.5\cdot30\cdot24</math> hours. Therefore, the speed (in miles per hour) is <cmath>\frac{292{,}526{,}838}{6.5\cdot30\cdot24} \approx \frac{300{,}000{,}000}{6.5\cdot30\cdot24} = \frac{10{,}000{,}000}{6.5\cdot24} \approx \frac{10{,}000{,}000}{6.4\cdot25} = \frac{10{,}000{,}000}{160} = 62500 \approx \boxed{\textbf{(C)}\ 60{,}000}.</cmath>
+
Note that <math>6.5</math> months is approximately <math>6.5\cdot30\cdot24</math> hours. Therefore, the speed (in miles per hour) is <cmath>\frac{292{,}526{,}838}{6.5\cdot30\cdot24} \approx \frac{300{,}000{,}000}{6.5\cdot30\cdot24} = \frac{10{,}000{,}000}{6.5\cdot24} \approx \frac{10{,}000{,}000}{6.4\cdot25} = \frac{10{,}000{,}000}{160} = 62500 \approx \boxed{\textbf{(C)}\ 60{,}000}.</cmath>
 
As the answer choices are far apart from each other, we can ensure that the approximation is correct.
 
As the answer choices are far apart from each other, we can ensure that the approximation is correct.
  
Line 12: Line 12:
  
 
==Solution 2==
 
==Solution 2==
Note that <math>292{,}526{,}838 \approx 300{,}000{,}000</math> miles. We also know that <math>6.5</math> months is equivalent to <math>6.5\cdot30\cdot24</math> hours. Now, we can calculate the speed in miles per hour, which we find is about
+
Note that <math>292{,}526{,}838 \approx 300{,}000{,}000</math> miles. We also know that <math>6.5</math> months is approximately <math>6.5\cdot30\cdot24</math> hours. Now, we can calculate the speed in miles per hour, which we find is about
 
<cmath>\dfrac{300{,}000{,}000}{6.5\cdot30\cdot24}=\dfrac{10{,}000{,}000}{6.5\cdot24}=\dfrac{10{,}000{,}000}{13\cdot12}=\dfrac{10{,}000{,}000}{156}\approx\dfrac{10{,}000{,}000}{150}\approx\dfrac{200{,}000}{3}\approx\boxed{\textbf{(C)}\ 60{,}000}.</cmath>
 
<cmath>\dfrac{300{,}000{,}000}{6.5\cdot30\cdot24}=\dfrac{10{,}000{,}000}{6.5\cdot24}=\dfrac{10{,}000{,}000}{13\cdot12}=\dfrac{10{,}000{,}000}{156}\approx\dfrac{10{,}000{,}000}{150}\approx\dfrac{200{,}000}{3}\approx\boxed{\textbf{(C)}\ 60{,}000}.</cmath>
 
~MathFun1000
 
~MathFun1000

Revision as of 06:23, 2 February 2023

Problem

NASA’s Perseverance Rover was launched on July $30,$ $2020.$ After traveling $292{,}526{,}838$ miles, it landed on Mars in Jezero Crater about $6.5$ months later. Which of the following is closest to the Rover’s average interplanetary speed in miles per hour?

$\textbf{(A)}\ 6{,}000 \qquad \textbf{(B)}\ 12{,}000 \qquad \textbf{(C)}\ 60{,}000 \qquad \textbf{(D)}\ 120{,}000 \qquad \textbf{(E)}\ 600{,}000$

Solution 1

Note that $6.5$ months is approximately $6.5\cdot30\cdot24$ hours. Therefore, the speed (in miles per hour) is \[\frac{292{,}526{,}838}{6.5\cdot30\cdot24} \approx \frac{300{,}000{,}000}{6.5\cdot30\cdot24} = \frac{10{,}000{,}000}{6.5\cdot24} \approx \frac{10{,}000{,}000}{6.4\cdot25} = \frac{10{,}000{,}000}{160} = 62500 \approx \boxed{\textbf{(C)}\ 60{,}000}.\] As the answer choices are far apart from each other, we can ensure that the approximation is correct.

~apex304, SohumUttamchandani, MRENTHUSIASM

Solution 2

Note that $292{,}526{,}838 \approx 300{,}000{,}000$ miles. We also know that $6.5$ months is approximately $6.5\cdot30\cdot24$ hours. Now, we can calculate the speed in miles per hour, which we find is about \[\dfrac{300{,}000{,}000}{6.5\cdot30\cdot24}=\dfrac{10{,}000{,}000}{6.5\cdot24}=\dfrac{10{,}000{,}000}{13\cdot12}=\dfrac{10{,}000{,}000}{156}\approx\dfrac{10{,}000{,}000}{150}\approx\dfrac{200{,}000}{3}\approx\boxed{\textbf{(C)}\ 60{,}000}.\] ~MathFun1000

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=AJqTqVLEFnI

Video Solution (Animated)

https://youtu.be/hwR2VM9tHJ0

~Star League (https://starleague.us)

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=4695

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png