Difference between revisions of "2023 AMC 8 Problems/Problem 1"

m
Line 5: Line 5:
 
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24</math>
 
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24</math>
  
==Solution==  
+
==Solution 1==  
  
 
By the order of operations, we have <cmath>(8 \times 4 + 2) - (8 + 4 \times 2) = (32+2) - (8+8) = 34 - 16 = \boxed{\textbf{(D)}\ 18}.</cmath>
 
By the order of operations, we have <cmath>(8 \times 4 + 2) - (8 + 4 \times 2) = (32+2) - (8+8) = 34 - 16 = \boxed{\textbf{(D)}\ 18}.</cmath>
 
~apex304, TaeKim, peelybonehead, MRENTHUSIASM
 
~apex304, TaeKim, peelybonehead, MRENTHUSIASM
 +
 +
==Solution 2==
 +
 +
We can simplify the expression above in another way: <math>(8 \times 4 + 2) - (8 + 4 \times 2)=8\times4+2-8-4\times2=32+2-8-8=34-16=\boxed{\textbf{(D)}\ 18}.</math>$
 +
 +
~MathFun1000
  
 
==Video Solution by Magic Square==
 
==Video Solution by Magic Square==

Revision as of 15:16, 28 January 2023

Problem

What is the value of $(8 \times 4 + 2) - (8 + 4 \times 2)$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24$

Solution 1

By the order of operations, we have \[(8 \times 4 + 2) - (8 + 4 \times 2) = (32+2) - (8+8) = 34 - 16 = \boxed{\textbf{(D)}\ 18}.\] ~apex304, TaeKim, peelybonehead, MRENTHUSIASM

Solution 2

We can simplify the expression above in another way: $(8 \times 4 + 2) - (8 + 4 \times 2)=8\times4+2-8-4\times2=32+2-8-8=34-16=\boxed{\textbf{(D)}\ 18}.$$

~MathFun1000

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5746

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=EcrktBc8zrM

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png