Difference between revisions of "2023 AMC 8 Problems/Problem 4"

(Solution: Considering the perfect squares should be an alternate approach, but harder in my opinion.)
(Solution)
Line 45: Line 45:
 
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4</math>
 
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4</math>
  
==Solution==
+
==Solution 1==
  
 
We fill out the grid, as shown below:
 
We fill out the grid, as shown below:

Revision as of 18:17, 27 January 2023

Problem

The numbers from $1$ to $49$ are arranged in a spiral pattern on a square grid, beginning at the center. The first few numbers have been entered into the grid below. Consider the four numbers that will appear in the shaded squares, on the same diagonal as the number $7.$ How many of these four numbers are prime? [asy] /* Made by MRENTHUSIASM */ size(175);  void ds(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,mediumgrey); }  ds((0.5,4.5)); ds((1.5,3.5)); ds((3.5,1.5)); ds((4.5,0.5));  add(grid(7,7,grey+linewidth(1.25)));  int adj = 1; int curUp = 2; int curLeft = 4; int curDown = 6;  label("$1$",(3.5,3.5));  for (int len = 3; len<=3; len+=2) { 	for (int i=1; i<=len-1; ++i)     		{ 			label("$"+string(curUp)+"$",(3.5+adj,3.5-adj+i));     		label("$"+string(curLeft)+"$",(3.5+adj-i,3.5+adj));      		label("$"+string(curDown)+"$",(3.5-adj,3.5+adj-i));     		++curDown;     		++curLeft;     		++curUp; 		} 	++adj;     curUp = len^2 + 1;     curLeft = len^2 + len + 2;     curDown = len^2 + 2*len + 3; }  draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2)); [/asy] $\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution 1

We fill out the grid, as shown below: [asy] /* Made by MRENTHUSIASM */ size(175);  void ds(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,mediumgrey); }  ds((0.5,4.5)); ds((1.5,3.5)); ds((3.5,1.5)); ds((4.5,0.5));  add(grid(7,7,grey+linewidth(1.25)));  int adj = 1; int curUp = 2; int curLeft = 4; int curDown = 6; int curRight = 8;  label("$1$",(3.5,3.5));  for (int len = 3; len<=7; len+=2) { 	for (int i=1; i<=len-1; ++i)     		{ 			label("$"+string(curUp)+"$",(3.5+adj,3.5-adj+i));     		label("$"+string(curLeft)+"$",(3.5+adj-i,3.5+adj));      		label("$"+string(curDown)+"$",(3.5-adj,3.5+adj-i));     		label("$"+string(curRight)+"$",(3.5-adj+i,3.5-adj));     		++curDown;     		++curLeft;     		++curUp;     		++curRight; 		} 	++adj;     curUp = len^2 + 1;     curLeft = len^2 + len + 2;     curDown = len^2 + 2*len + 3;     curRight = len^2 + 3*len + 4; }  draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2)); [/asy] From the four numbers that appear in the shaded squares, $\boxed{\textbf{(D)}\ 3}$ of them are prime: $19,23,$ and $47.$

~MathFun1000, MRENTHUSIASM

Solution 2

Note that given time constraint, it's better to only count from perfect squares (in pink), as shown below: [asy] /* Grid Made by MRENTHUSIASM */ /* Squares pattern solution input by TheMathGuyd */ size(175);  void ds(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,mediumgrey); }  void ps(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,pink+opacity(0.3)); } real ts = 0.5;  ds((0.5,4.5));label("$39$",(0.5,4.5)); ds((1.5,3.5));label("$19$",(1.5,3.5)); ds((3.5,1.5));label("$23$",(3.5,1.5)); ds((4.5,0.5));label("$47$",(4.5,0.5));  ps((3.5,3.5));label("$1$",(3.5,3.5)); ps((4.5,2.5));label("$9$",(4.5,2.5)); ps((5.5,1.5));label("$25$",(5.5,1.5)); ps((6.5,0.5));label("$49$",(6.5,0.5)); ps((3.5,4.5));label("$4$",(3.5,4.5)); ps((2.5,5.5));label("$16$",(2.5,5.5)); ps((1.5,6.5));label("$36$",(1.5,6.5)); label(scale(ts)*"$\leftarrow$",(1,6),NE); label(scale(ts)*"$+1$",(1,6),NW); label(scale(ts)*"$\downarrow$",(1,6),SW); label(scale(ts)*"$+2$",(1,5),NW); label(scale(ts)*"$\downarrow$",(1,5),SW); label(scale(ts)*"$+3$",(1,4),NW); label(scale(ts)*"$+1$",(2,5),NW); label(scale(ts)*"$\downarrow$",(2,5),SW); label(scale(ts)*"$+2$",(2,4),NW); label(scale(ts)*"$\downarrow$",(2,4),SW); label(scale(ts)*"$+3$",(2,3),NW);  label(scale(ts)*"$\leftarrow$",(5,1),NE); label(scale(ts)*"$-1$",(5,1),NW); label(scale(ts)*"$\leftarrow$",(4,1),NE); label(scale(ts)*"$-2$",(4,1),NW); label(scale(ts)*"$\leftarrow$",(6,0),NE); label(scale(ts)*"$-1$",(6,0),NW); label(scale(ts)*"$\leftarrow$",(5,0),NE); label(scale(ts)*"$-2$",(5,0),NW);  add(grid(7,7,grey+linewidth(1.25))); //USES OLYMPIAD.ASY  draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2)); [/asy] From the four numbers that appear in the shaded squares, $\boxed{\textbf{(D)}\ 3}$ of them are prime: $19,23,$ and $47.$

~TheMathGuyd

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5392

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=EcrktBc8zrM

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png