Difference between revisions of "2022 AMC 12A Problems/Problem 23"

m (Solution 1)
(Solution 2)
Line 60: Line 60:
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 
==Solution 2==
 
 
We will use the following lemma to solve this problem.
 
 
---------------------------
 
Denote by <math>p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}</math> the prime factorization of <math>L_n</math>.
 
For any <math>i \in \left\{ 1, 2, \ldots, m \right\}</math>, denote <math>\sum_{j = 1}^{\left\lfloor \frac{n}{p_i^{\alpha_i}} \right\rfloor} \frac{1}{j} = \frac{a_i}{b_i}</math>, where <math>a_i</math> and <math>b_i</math> are relatively prime.
 
Then
 
<math>k_n = L_n</math> if and only if for any <math>i \in \left\{ 1, 2, \ldots, m \right\}</math>, <math>a_i</math> is not a multiple of <math>p_i</math>.
 
---------------------------
 
 
Now, we use the result above to solve this problem.
 
 
Following from this lemma, the list of <math>n</math> with <math>1 \leq n \leq 22</math> and <math>k_n < L_n</math> is
 
<cmath>
 
6, 7, 8, 18, 19, 20, 21, 22 .
 
</cmath>
 
 
Therefore, the answer is <math>\boxed{\textbf{(D) }8}</math>.
 
 
<b>Note: Detailed analysis of this problem (particularly the motivation and the proof of the lemma above) can be found in my video solution below.</b>
 
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
  
 
== Video Solution ==
 
== Video Solution ==

Revision as of 09:57, 4 January 2023

Problem

Let $h_n$ and $k_n$ be the unique relatively prime positive integers such that \[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_n}{k_n}.\] Let $L_n$ denote the least common multiple of the numbers $1, 2, 3, \ldots, n$. For how many integers with $1\le{n}\le{22}$ is $k_n<L_n$?

$\textbf{(A) }0 \qquad\textbf{(B) }3 \qquad\textbf{(C) }7 \qquad\textbf{(D) }8\qquad\textbf{(E) }10$

Solution

We are given that \[\sum_{i=1}^{n}\frac1i = \frac{1}{L_n}\sum_{i=1}^{n}\frac{L_n}{i} = \frac{h_n}{k_n}.\] Since $k_n < L_n,$ we need $\gcd\left(\sum_{i=1}^{n}\frac{L_n}{i}, L_n\right)>1.$

For all primes $p$ such that $p\leq n,$ let $v_p(L_n)=e\geq1$ be the largest power of $p$ that is a factor of $L_n.$

It is clear that $L_n\equiv0\pmod{p},$ so we test whether $\sum_{i=1}^{n}\frac{L_n}{i}\equiv0\pmod{p}.$ Note that \[\sum_{i=1}^{n}\frac{L_n}{i} \equiv \sum_{i=1}^{\left\lfloor\tfrac{n}{p^e}\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p^e) \equiv \sum_{i=1}^{\left\lfloor\tfrac{n}{p^e}\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p).\] We construct the following table for $v_p(L_n)=e:$ \[\begin{array}{c|c|l|c}  \textbf{Case of }\boldsymbol{(p,e)} & \textbf{Interval of }\boldsymbol{n} & \hspace{22.75mm}\textbf{Sum} & \boldsymbol{\stackrel{?}{\equiv}0\ (\operatorname{mod} \ p)} \\ [0.5ex] \hline\hline  & & & \\ [-2ex] (2,1) & [2,3] & L_n/2 &  \\      (2,2) & [4,7] & L_n/4 &  \\     (2,3) & [8,15] & L_n/8 & \\     (2,4) & [16,22] & L_n/16 &  \\ [0.5ex] \hline   & & & \\ [-2ex] (3,1) & [3,5] & L_n/3 & \\     & [6,8] & L_n/3 + L_n/6 & \checkmark \\    (3,2) & [9,17] & L_n/9 & \\  & [18,22] & L_n/9 + L_n/18 & \checkmark \\ [0.5ex] \hline   & & & \\ [-2ex] (5,1) & [5,9] & L_n/5 & \\     & [10,14] & L_n/5 + L_n/10 & \\ & [15,19] & L_n/5 + L_n/10 + L_n/15 & \\   & [20,22] & L_n/5 + L_n/10 + L_n/15 + L_n/20 & \checkmark \\ [0.5ex] \hline   & & & \\ [-2ex] (7,1) & [7,13] & L_n/7 & \\     & [14,20] & L_n/7 + L_n/14 & \\ & [21,22] & L_n/7 + L_n/14 + L_n/21 & \\ [0.5ex] \hline   & & & \\ [-2ex] (11,1) & [11,21] & L_n/11 &  \\ & \{22\} & L_n/11 + L_n/22 & \\ [0.5ex] \hline & & & \\ [-2ex] (13,1) & [13,22] & L_n/13 &  \\ [0.5ex] \hline & & & \\ [-2ex] (17,1) & [17,22] & L_n/17 &  \\ [0.5ex] \hline & & & \\ [-2ex] (19,1) & [19,22] & L_n/19 & \\ [0.5ex] \end{array}\] Note that:

  1. If the Sum column has only one term, then it is never congruent to $0$ modulo $p.$
  2. If $p$ and $q$ are positive integers such that $p\geq q,$ then $L_p$ is a multiple of $L_q.$ Therefore, for a specific case, if the sum is congruent to $0$ modulo $p$ for the smallest element in the interval of $n,$ then it is also congruent to $0$ modulo $p$ for all other elements in the interval of $n.$

Together, there are $\boxed{\textbf{(D) }8}$ such integers $n,$ namely \[6,7,8,18,19,20,21,22.\]

~MRENTHUSIASM

Video Solution

https://youtu.be/4RHmsoDsU9E

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://youtu.be/pZAez5A8tWA

~MathProblemSolvingSkills.com

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png