Difference between revisions of "2022 AMC 12A Problems/Problem 23"

Line 8: Line 8:
  
 
We are given that <cmath>\sum_{i=1}^{n}\frac1i = \frac{1}{L_n}\sum_{i=1}^{n}\frac{L_n}{i} = \frac{h_n}{k_n}.</cmath> Since <math>k_n < L_n,</math> we need <math>\gcd\left(\sum_{i=1}^{n}\frac{L_n}{i}, L_n\right)>1.</math>
 
We are given that <cmath>\sum_{i=1}^{n}\frac1i = \frac{1}{L_n}\sum_{i=1}^{n}\frac{L_n}{i} = \frac{h_n}{k_n}.</cmath> Since <math>k_n < L_n,</math> we need <math>\gcd\left(\sum_{i=1}^{n}\frac{L_n}{i}, L_n\right)>1.</math>
 +
 +
For all primes <math>p</math> such that <math>p\leq n,</math> let <math>v_p(L_n)=e\geq1</math> be the largest power of <math>p</math> that is a factor of <math>L_n.</math>
  
 
==Solution 2==
 
==Solution 2==

Revision as of 22:59, 3 January 2023

Problem

Let $h_n$ and $k_n$ be the unique relatively prime positive integers such that \[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_n}{k_n}.\] Let $L_n$ denote the least common multiple of the numbers $1, 2, 3, \ldots, n$. For how many integers with $1\le{n}\le{22}$ is $k_n<L_n$?

$\textbf{(A) }0 \qquad\textbf{(B) }3 \qquad\textbf{(C) }7 \qquad\textbf{(D) }8\qquad\textbf{(E) }10$

Solution 1

We are given that \[\sum_{i=1}^{n}\frac1i = \frac{1}{L_n}\sum_{i=1}^{n}\frac{L_n}{i} = \frac{h_n}{k_n}.\] Since $k_n < L_n,$ we need $\gcd\left(\sum_{i=1}^{n}\frac{L_n}{i}, L_n\right)>1.$

For all primes $p$ such that $p\leq n,$ let $v_p(L_n)=e\geq1$ be the largest power of $p$ that is a factor of $L_n.$

Solution 2

We will use the following lemma to solve this problem.


Denote by $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ the prime factorization of $L_n$. For any $i \in \left\{ 1, 2, \ldots, m \right\}$, denote $\sum_{j = 1}^{\left\lfloor \frac{n}{p_i^{\alpha_i}} \right\rfloor} \frac{1}{j} = \frac{a_i}{b_i}$, where $a_i$ and $b_i$ are relatively prime. Then $k_n = L_n$ if and only if for any $i \in \left\{ 1, 2, \ldots, m \right\}$, $a_i$ is not a multiple of $p_i$.


Now, we use the result above to solve this problem.

Following from this lemma, the list of $n$ with $1 \leq n \leq 22$ and $k_n < L_n$ is \[6, 7, 8, 18, 19, 20, 21, 22 .\]

Therefore, the answer is $\boxed{\textbf{(D) }8}$.

Note: Detailed analysis of this problem (particularly the motivation and the proof of the lemma above) can be found in my video solution below.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://youtu.be/4RHmsoDsU9E

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://youtu.be/pZAez5A8tWA

~MathProblemSolvingSkills.com

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png