Difference between revisions of "2022 MMATHS Individual Round Problems/Problem 4"

(Problem)
(Solution 1)
Line 9: Line 9:
  
 
==Solution 1==
 
==Solution 1==
 +
It would be helpful to list some two-digit perfect squares. These are <math>16, 25, 36, 49, 64,</math> and <math>81</math>. We can eliminate <math>16</math> and <math>64</math>. Let's check each of the next ones.
 +
 +
For <math>25</math>, we have <math>5-2 = 3</math>, <math>5+2 = 7</math>.
 +
 +
For <math>36</math>, we have <math>6-3 = 3, 6+3 = 9</math>.
 +
 +
For <math>49</math>, we have <math>9-4 = 5, 9+4 = 13</math>.
 +
 +
For <math>64</math>, we have <math>6-4 = 2, 6+4 = 10.
 +
 +
We can clearly see that </math>25<math> doesn't work because </math>7<math> would identify it, nor does </math>49<math> because </math>13<math> would identify it, nor does </math>64<math> because </math>10<math> would identify it. We're left with only </math>36<math>. Therefore, our answer is </math>\boxed {36}$.
 +
 +
-Arcticturn

Revision as of 11:40, 19 December 2022

Problem

Cat and Claire are having a conversation about Cat's favorite number. Cat says, "My favorite number is a two-digit perfect square!"

Claire asks, "If I picked a digit of your favorite number at random and revealed it to me without telling me which place it was in, is there a chance I'd know for certain what it is?"

Cat says, "Yes!" Moreover, if I told you a number and identified it as the sum of the digits of my favorite number, or if I told you a number and identified it as the positive difference of the digits of my favorite number, you wouldn't know my favorite number!

Claire says, "Now I know your favorite number!" What is Cat's favorite number?

Solution 1

It would be helpful to list some two-digit perfect squares. These are $16, 25, 36, 49, 64,$ and $81$. We can eliminate $16$ and $64$. Let's check each of the next ones.

For $25$, we have $5-2 = 3$, $5+2 = 7$.

For $36$, we have $6-3 = 3, 6+3 = 9$.

For $49$, we have $9-4 = 5, 9+4 = 13$.

For $64$, we have $6-4 = 2, 6+4 = 10.

We can clearly see that$ (Error compiling LaTeX. Unknown error_msg)25$doesn't work because$7$would identify it, nor does$49$because$13$would identify it, nor does$64$because$10$would identify it. We're left with only$36$. Therefore, our answer is$\boxed {36}$.

-Arcticturn