Difference between revisions of "2022 AMC 12A Problems/Problem 3"

(Solution 2 (Area and Perimeter of Square): Prioritized solutions based on elegance.)
Line 3: Line 3:
 
Five rectangles, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math>, are arranged in a square as shown below. These rectangles have dimensions <math>1\times6</math>, <math>2\times4</math>, <math>5\times6</math>, <math>2\times7</math>, and <math>2\times3</math>, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?
 
Five rectangles, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math>, are arranged in a square as shown below. These rectangles have dimensions <math>1\times6</math>, <math>2\times4</math>, <math>5\times6</math>, <math>2\times7</math>, and <math>2\times3</math>, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?
 
<asy>
 
<asy>
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,mediumgray);
+
size(150);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 
draw((3,0)--(3,4.5));
 
draw((3,0)--(3,4.5));
Line 38: Line 40:
  
 
==Solution 4 (Observations)==
 
==Solution 4 (Observations)==
Let's label some points.
+
Let's label some points:
 
<asy>
 
<asy>
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,mediumgray);
+
size(175);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 
draw((3,0)--(3,4.5));
 
draw((3,0)--(3,4.5));
Line 47: Line 51:
 
draw((7,2.5)--(3,2.5));
 
draw((7,2.5)--(3,2.5));
  
label("A",(0,0),S);
+
label("$A$",(0,0),S);
label("B",(3,0),S);
+
label("$B$",(3,0),S);
label("C",(7,0),S);
+
label("$C$",(7,0),S);
label("D",(7.5,3),S);
+
label("$D$",(7.5,3),S);
label("E",(7.5,7.8),S);
+
label("$E$",(7.5,7.8),S);
label("F",(5.5,7.8),S);
+
label("$F$",(5.5,7.8),S);
label("G",(-.5,7.8),S);
+
label("$G$",(-.5,7.8),S);
label("H",(-.5,5),S);
+
label("$H$",(-.5,5),S);
 
</asy>
 
</asy>
 
By finding the dimensions of the middle rectangle, we need to find the dimensions of the other 4 rectangles. By doing this, there is going to be a rule.  
 
By finding the dimensions of the middle rectangle, we need to find the dimensions of the other 4 rectangles. By doing this, there is going to be a rule.  

Revision as of 09:28, 14 December 2022

Problem

Five rectangles, $A$, $B$, $C$, $D$, and $E$, are arranged in a square as shown below. These rectangles have dimensions $1\times6$, $2\times4$, $5\times6$, $2\times7$, and $2\times3$, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle? [asy] size(150); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5)); [/asy] $\textbf{(A) }A\qquad\textbf{(B) }B \qquad\textbf{(C) }C \qquad\textbf{(D) }D\qquad\textbf{(E) }E$

Solution 1 (Area and Perimeter of Square)

The area of this square is equal to $6 + 8 + 30 + 14 + 6 = 64$, and thus its side lengths are $8$. The sum of the dimensions of the rectangles are $2 + 7 + 5 + 6 + 2 + 3 + 1 + 6 + 2 + 4 = 38$. Thus, because the perimeter of the rectangle is $32$, the rectangle on the inside must have a perimeter of $6 \cdot 2 = 12$. The only rectangle that works is $\boxed{\textbf{(B) }B}$.

~mathboy100

Solution 2 (Perimeter of Square)

Note that the perimeter of the square is the sum of four pairs of dimensions (eight values are added). Adding up all dimensions gives us $2+7+5+6+2+3+1+6+2+4=38$. We know that as the square's side length is an integer, the perimeter must be divisible by $4$. Testing out by subtracting all five pairs of dimensions from $38$, only $2\times4$ works since $38-2-4=32=8\cdot4$, which corresponds with $\boxed{\textbf{(B) }B}$.

~iluvme

Solution 3 (Observations)

Note that rectangle $D$ must be on the edge. Without loss of generality, let the top-left rectangle be $D,$ as shown below:

DIAGRAM READY SOON

We conclude that $x=1,$ so we can determine Rectangle $A.$

Continuing with a similar process, we can determine Rectangles $C,E,$ and $B,$ in this order. The answer is $\boxed{\textbf{(B) }B}$ as shown below.

DIAGRAM READY SOON

~MRENTHUSIASM

Solution 4 (Observations)

Let's label some points: [asy] size(175); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5));  label("$A$",(0,0),S); label("$B$",(3,0),S); label("$C$",(7,0),S); label("$D$",(7.5,3),S); label("$E$",(7.5,7.8),S); label("$F$",(5.5,7.8),S); label("$G$",(-.5,7.8),S); label("$H$",(-.5,5),S); [/asy] By finding the dimensions of the middle rectangle, we need to find the dimensions of the other 4 rectangles. By doing this, there is going to be a rule.

Rule: $AB + BC = CD + DE = EF + FG = GH + AH$

Let's make a list of all the dimensions of the rectangles from the diagram. We have to fill in the dimensions from up above, but still apply to the rule.

$AB\times AH$

$CD\times BC$

$EF\times DE$

$GH\times FG$

By applying the rule, we get $AB=2, BC=6, CD=5, DE=3, EF=2, FG=6, GH=1$, and $AH=7$.

By substitution, we get this list

$2\times 7$

$5\times 6$

$2\times 3$

$1\times 6$

This also tells us that the diagram is not drawn to scale, lol.

Notice how the only dimension not used in the list was $2\times 4$ and that corresponds with B so the answer is, $\textbf{(B) }B.$

~ghfhgvghj10 & Education, the study of everything.

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions