Difference between revisions of "1981 AHSME Problems/Problem 27"

(Created page with "==Problem== In the adjoining figure triangle <math>ABC</math> is inscribed in a circle. Point <math>D</math> lies on <math>\stackrel{\frown}{AC}</math> with <math>\stackrel{\f...")
 
(Problem)
 
Line 2: Line 2:
 
In the adjoining figure triangle <math>ABC</math> is inscribed in a circle. Point <math>D</math> lies on <math>\stackrel{\frown}{AC}</math> with <math>\stackrel{\frown}{DC} = 30^\circ</math>, and point <math>G</math> lies on <math>\stackrel{\frown}{BA}</math> with <math>\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}</math>. Side <math>AB</math> and side <math>AC</math> each have length equal to the length of chord <math>DG</math>, and <math>\angle CAB = 30^\circ</math>. Chord <math>DG</math> intersects sides <math>AC</math> and <math>AB</math> at <math>E</math> and <math>F</math>, respectively. The ratio of the area of <math>\triangle AFE</math> to the area of <math>\triangle ABC</math> is
 
In the adjoining figure triangle <math>ABC</math> is inscribed in a circle. Point <math>D</math> lies on <math>\stackrel{\frown}{AC}</math> with <math>\stackrel{\frown}{DC} = 30^\circ</math>, and point <math>G</math> lies on <math>\stackrel{\frown}{BA}</math> with <math>\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}</math>. Side <math>AB</math> and side <math>AC</math> each have length equal to the length of chord <math>DG</math>, and <math>\angle CAB = 30^\circ</math>. Chord <math>DG</math> intersects sides <math>AC</math> and <math>AB</math> at <math>E</math> and <math>F</math>, respectively. The ratio of the area of <math>\triangle AFE</math> to the area of <math>\triangle ABC</math> is
  
[asy] defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("<math>A</math>",A,N); label("<math>B</math>",B,SE); label("<math>C</math>",C,SW); label("<math>D</math>",D,SW); label("<math>G</math>",G,NE); label("<math>E</math>",E,NW); label("<math>F</math>",F,W); label("<math>30^\circ</math>",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G); [/asy]
+
<asy>
 +
defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("$A$",A,N); label("$B$",B,SE); label("$C$",C,SW); label("$D$",D,SW); label("$G$",G,NE); label("$E$",E,NW); label("$F$",F,W); label("$30^\circ$",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G);
 +
</asy>
 +
 
 
<math>\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}</math>
 
<math>\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}</math>
  
 
==Solution==
 
==Solution==

Latest revision as of 10:11, 1 December 2022

Problem

In the adjoining figure triangle $ABC$ is inscribed in a circle. Point $D$ lies on $\stackrel{\frown}{AC}$ with $\stackrel{\frown}{DC} = 30^\circ$, and point $G$ lies on $\stackrel{\frown}{BA}$ with $\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}$. Side $AB$ and side $AC$ each have length equal to the length of chord $DG$, and $\angle CAB = 30^\circ$. Chord $DG$ intersects sides $AC$ and $AB$ at $E$ and $F$, respectively. The ratio of the area of $\triangle AFE$ to the area of $\triangle ABC$ is

[asy]  defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("$A$",A,N); label("$B$",B,SE); label("$C$",C,SW); label("$D$",D,SW); label("$G$",G,NE); label("$E$",E,NW); label("$F$",F,W); label("$30^\circ$",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G); [/asy]

$\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}$

Solution