Difference between revisions of "2022 AMC 12B Problems/Problem 11"

(Solution 3 (Third-order Linear Homogeneous Recurrence Relation))
Line 46: Line 46:
 
~lopkiloinm
 
~lopkiloinm
  
 +
== Solution 4 (Polynomial + Recursion) ==
 +
let <math>a = \frac{-1+i\sqrt{3}}{2}</math> and <math>b = \frac{-1-i\sqrt{3}}{2}</math>
 +
<math>a + b = -1</math>
 +
<math>a * b = 1</math>
 +
Therefore a and b are the roots of <math>x^2 + x + 1 = 0</math>
 +
By factor theorem <math>a^2 + a + 1 = 0</math> and <math>b^2 + b + 1 = 0</math>
 +
Multiply the first equation by <math>a^{n-2}</math> and the second equation by <math>b^{n-2}</math>
 +
This gives us <math>a^n + a^{n-1} + a^{n-2} = 0</math> and <math>b^n + b^{n-1} + b^{n-2} = 0</math>.
 +
Adding both equations together we get <math>a^n + b^n + a^{n-1} + b^{n-1}+ a^{n-2} + b^{n-2} = 0</math>
 +
This is the same as <math>f(n) + f(n-1) + f(n-2) = 0</math>.
 +
Therefore <math>f(n) = -f(n-1) - f(n-2)</math>
 +
Plugging in <math>n=1,2,3,4,5,6</math> we get <math>f(n) = -1, -1, 2, -1, -1, 2</math> therefore we know that if <math>n</math> is a multiple of <math>3</math>, then <math>f(n)</math> is <math>2</math>.
 +
Since <math>2022</math> is a multiple of <math>3</math>, our answers is <math>E) 2.</math>
 +
~vpeddi18
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2022|ab=B|num-b=10|num-a=12}}
 
{{AMC12 box|year=2022|ab=B|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:54, 19 November 2022

Problem

Let $f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right)^n + \left( \frac{-1-i\sqrt{3}}{2} \right)^n$, where $i = \sqrt{-1}$. What is $f(2022)$?

$\textbf{(A)}\ -2 \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ \sqrt{3} \qquad \textbf{(E)}\ 2$

Solution 1

Converting both summands to exponential form, \[-1 + i\sqrt{3} = 2e^{\frac{2\pi i}{3}}\] \[-1 - i\sqrt{3} = 2e^{-\frac{2\pi i}{3}} = 2e^{\frac{4\pi i}{3}}\]

Notice that both are scaled copies of the third roots of unity. When we replace the summands with their exponential form, we get \[f(n) = \left(e^{\frac{2\pi i}{3}}\right)^n + \left(e^{\frac{4\pi i}{3}}\right)^n\] When we substitute $n = 2022$, we get \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{2022} + \left(e^{\frac{4\pi i}{3}}\right)^{2022}\] We can rewrite $2022$ as $3 \cdot 674$, how does that help? \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{3 \cdot 674} + \left(e^{\frac{4\pi i}{3}}\right)^{3 \cdot 674} =\] \[\left(\left(e^{\frac{2\pi i}{3}}\right)^{3}\right)^{674} + \left(\left(e^{\frac{4\pi i}{3}}\right)^{3}\right)^{674} =\] \[1^{674} + 1^{674} = \boxed{\textbf{(E)} \ 2}\] Since any third root of unity must cube to $1$.

~ $\color{magenta} zoomanTV$

Solution 2 (Eisenstein Units)

The numbers $\frac{-1+i\sqrt{3}}{2}$ and $\frac{-1-i\sqrt{3}}{2}$ are both $\textbf{Eisenstein Units}$ (along with $1$), denoted as $\omega$ and $\omega^2$, respectively. They have the property that when they are cubed, they equal to $1$. Thus, we can immediately solve:

\[\omega^{2022} + \omega^{2 \cdot 2022}\] \[= \omega^{3 * 674} + \omega^{3 \cdot 2 \cdot 674}\] \[= 1^{674} + 1^{2 \cdot 674}\] \[= \boxed{\textbf{(E)} \ 2}\]

~mathboy100

Solution 3 (Third-order Homogeneous Linear Recurrence Relation)

Notice how this looks like the closed form of the Fibonacci sequence except different roots. This is motivation to turn this closed formula into a recurrence relation. The base of the exponents are the roots of the characteristic equation $r^3-1=0$. So we have \begin{align*} a_0&=2\\ a_1&=-1\\ a_2&=-1\\ a_n&=a_{n-3} \end{align*} Every time $n$ is multiple of $3$ as is true when $n=2022$, $a_n= \boxed{\textbf{(E)} \ 2}$ ~lopkiloinm

Solution 4 (Polynomial + Recursion)

let $a = \frac{-1+i\sqrt{3}}{2}$ and $b = \frac{-1-i\sqrt{3}}{2}$ $a + b = -1$ $a * b = 1$ Therefore a and b are the roots of $x^2 + x + 1 = 0$ By factor theorem $a^2 + a + 1 = 0$ and $b^2 + b + 1 = 0$ Multiply the first equation by $a^{n-2}$ and the second equation by $b^{n-2}$ This gives us $a^n + a^{n-1} + a^{n-2} = 0$ and $b^n + b^{n-1} + b^{n-2} = 0$. Adding both equations together we get $a^n + b^n + a^{n-1} + b^{n-1}+ a^{n-2} + b^{n-2} = 0$ This is the same as $f(n) + f(n-1) + f(n-2) = 0$. Therefore $f(n) = -f(n-1) - f(n-2)$ Plugging in $n=1,2,3,4,5,6$ we get $f(n) = -1, -1, 2, -1, -1, 2$ therefore we know that if $n$ is a multiple of $3$, then $f(n)$ is $2$. Since $2022$ is a multiple of $3$, our answers is $E) 2.$ ~vpeddi18

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png