|
|
(15 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2022 AMC 10A Problems/Problem 23]] |
− | Isosceles trapezoid <math>ABCD</math> has parallel sides <math>\overline{AD}</math> and <math>\overline{BC},</math> with <math>BC < AD</math> and <math>AB = CD.</math> There is a point <math>P</math> in the plane such that <math>PA=1, PB=2, PC=3,</math> and <math>PD=4.</math> What is <math>\tfrac{BC}{AD}?</math>
| |
− | | |
− | <math>\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}</math>
| |
− | | |
− | ==Solution 1==
| |
− | Consider the reflection <math>P^{\prime}</math> of <math>P</math> over the perpendicular bisector of <math>\overline{BC}</math>, creating two new isosceles trapezoids <math>DAPP^{\prime}</math> and <math>CBPP^{\prime}</math>. Under this reflection, <math>P^{\prime}A=PD=4</math>, <math>P^{\prime}D=PA=1</math>, <math>P^{\prime}C=PB=2</math>, and <math>P^{\prime}B=PC=3</math>. By Ptolmey's theorem <cmath>\begin{align*} PP^{\prime}\cdot AD+1=16 \\ PP^{\prime}\cdot BC+4=9\end{align*}</cmath> Thus <math>PP^{\prime}\cdot AD=15</math> and <math>PP^{\prime}\cdot BC=5</math>; dividing these two equations and taking the reciprocal yields <math>\frac{BC}{AD}=\boxed{\textbf{(B)}~\frac{1}{3}}</math>.
| |
− | | |
− | ==Solution 2 (Coordinate Bashing)==
| |
− | | |
− | Since we're given distances and nothing else, we can represent each point as a coordinate and use the distance formula to set up a series of systems and equations.
| |
− | Let the height of the trapezoid be <math>h</math>, and let the coordinates of <math>A</math> and <math>D</math> be at <math>(-a,0)</math> and <math>(a,0)</math>, respectively. Then let <math>B</math> and <math>C</math> be at <math>(-b,h)</math> and <math>(b,h)</math>, respectively. This follows the rules that this is an isosceles trapezoid since the origin is centered on the middle of <math>AD</math>. Finally, let <math>P</math> be located at point <math>(c,d)</math>.
| |
− | | |
− | The distance from <math>P</math> to <math>A</math> is <math>1</math>, so by the distance formula: <cmath>\sqrt{(c+a)^2+(d-h)^2} = 1 \implies (c+a)^2+(d-h)^2 = 1</cmath>
| |
− | The distance from <math>P</math> to <math>D</math> is <math>4</math>, so <cmath>\sqrt{(c-a)^2+(d-h)^2} = 1 \implies (c-a)^2+(d-h)^2 = 16</cmath>
| |
− | | |
− | Looking at these two equations alone, notice that the second term is the same for both equations, so we can subtract the equations. This yields <cmath>-4ac = 15</cmath>
| |
− | | |
− | Next, the distance from <math>P</math> to <math>B</math> is <math>2</math>, so <cmath>\sqrt{(c+b)^2+(d-h)^2} = 2 \implies (c+b)^2+(d-h)^2 = 4</cmath>
| |
− | The distance from <math>P</math> to <math>C</math> is <math>3</math>, so <cmath>\sqrt{(c-b)^2+(d-h)^2} = 3 \implies (c-b)^2+(d-h)^2 = 9</cmath>
| |
− | | |
− | Again, we can subtract these equations, yielding <cmath>-4bc = 5</cmath>
| |
− | | |
− | We can now divide the equations to eliminate <math>c</math>, yielding <cmath>\frac{b}{a} = \frac{5}{15} = \frac{1}{3}</cmath>
| |
− | | |
− | We wanted to find <math>\frac{BC}{AD}</math>. But since <math>b</math> is half of <math>BC</math> and <math>a</math> is half of <math>AD</math>, this ratio is equal to the ratio we want.
| |
− | | |
− | Therefore <math>\frac{BC}{AD} = \frac{1}{3} = \boxed{B}</math>
| |
− | | |
− | Solution in Progress
| |
− | | |
− | ~KingRavi
| |
− | | |
− | ==Solution 3 (Cheese)==
| |
− | Notice that the question never says what the height of the trapezoid is; the only property we know about it is that <math>AC=BD</math>. Therefore, we can say WLOG that the height of the trapezoid is <math>0</math> and all <math>5</math> points, including <math>P</math>, lie on the same line with <math>PA=AB=BC=CD=1</math>. Notice that this satisfies the problem requirements because <math>PA=1, PB=2, PC=3,PD=4</math>, and <math>AC=BD=2</math>.
| |
− | Now all we have to find is <math>\frac{BC}{AD} = \frac{1}{3}= \boxed{B}</math>
| |
− | | |
− | ~KingRavi
| |
− | | |
− | == Video Solution By ThePuzzlr ==
| |
− | https://youtu.be/KqtpaHy-eoU
| |
− | | |
− | ~ MathIsChess
| |
− | | |
− | | |
− | ==Video Solution==
| |
− | | |
− | https://youtu.be/hvIOvjjQvIw
| |
− | | |
− | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
| |
− | | |
− | == Video Solution by OmegaLearn using Pythagorean Theorem ==
| |
− | https://youtu.be/jnm2alniaM4
| |
− | | |
− | ~ pi_is_3.14
| |
− | | |
− | ==See also==
| |
− | {{AMC12 box|year=2022|ab=A|num-b=19|num-a=21}}
| |
− | {{AMC10 box|year=2022|ab=A|num-b=22|num-a=24}}
| |
− | | |
− | [[Category:Intermediate Geometry Problems]] | |
− | {{MAA Notice}}
| |