Difference between revisions of "2022 AMC 10B Problems/Problem 23"
(→Solution) |
(→Solution) |
||
Line 24: | Line 24: | ||
We have | We have | ||
− | < | + | <math></math> |
\begin{align*} | \begin{align*} | ||
P \left( \sum_{n=1}^\tau x_n > 1 \right) | P \left( \sum_{n=1}^\tau x_n > 1 \right) | ||
Line 37: | Line 37: | ||
& = \left( 1 - \frac{1}{2} \right)\left( 1 - \frac{1}{2} \right) | & = \left( 1 - \frac{1}{2} \right)\left( 1 - \frac{1}{2} \right) | ||
+ \left( 1 - \frac{1}{6} \right) \frac{1}{2} \\ | + \left( 1 - \frac{1}{6} \right) \frac{1}{2} \\ | ||
− | & = \boxed{\textbf{(C) \frac{2}{3}}} , | + | & = \boxed{\textbf{(C) <math>\frac{2}{3}</math>}} , |
\end{align*} | \end{align*} | ||
− | </ | + | <math></math> |
where the second equation follows from the property that <math>\left\{ x_n \right\}</math> and <math>\left\{ t_n \right\}</math> are independent sequences, the third equality follows from the lemma above. | where the second equation follows from the property that <math>\left\{ x_n \right\}</math> and <math>\left\{ t_n \right\}</math> are independent sequences, the third equality follows from the lemma above. |
Revision as of 14:11, 17 November 2022
Solution
We use the following lemma to solve this problem.
Let be independent random variables that are uniformly distributed on . Then for ,
For ,
Now, we solve this problem.
We denote by the last step Amelia moves. Thus, . We have
$$ (Error compiling LaTeX. Unknown error_msg) \begin{align*} P \left( \sum_{n=1}^\tau x_n > 1 \right) & = P \left( x_1 + x_2 > 1 | t_1 + t_2 > 1 \right)
P \left( t_1 + t_2 > 1 \right) \\
& \hspace{1cm} + P \left( x_1 + x_2 + x_3 > 1 | t_1 + t_2 \leq 1 \right) P \left( t_1 + t_2 \leq 1 \right) \\ & = P \left( x_1 + x_2 > 1 \right) P \left( t_1 + t_2 > 1 \right) + P \left( x_1 + x_2 + x_3 > 1 \right) P \left( t_1 + t_2 \leq 1 \right) \\ & = \left( 1 - \frac{1}{2} \right)\left( 1 - \frac{1}{2} \right) + \left( 1 - \frac{1}{6} \right) \frac{1}{2} \\ & = \boxed{\textbf{(C) }} , \end{align*} $$ (Error compiling LaTeX. Unknown error_msg)
where the second equation follows from the property that and are independent sequences, the third equality follows from the lemma above.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)