Difference between revisions of "2022 AMC 12A Problems/Problem 22"
m (→Solution 3) |
m (→Solution 3) |
||
Line 88: | Line 88: | ||
Plugging these into the area formula for a trapezoid, we are trying to maximize <math>\frac12\cdot\left(2b+\frac{b}{5}\right)\cdot\frac{9a}{10}=\frac{99ab}{100}</math>. Thus, the only thing we need to maximize is <math>ab</math>. | Plugging these into the area formula for a trapezoid, we are trying to maximize <math>\frac12\cdot\left(2b+\frac{b}{5}\right)\cdot\frac{9a}{10}=\frac{99ab}{100}</math>. Thus, the only thing we need to maximize is <math>ab</math>. | ||
− | With the restriction that <math>a^2+b^2=(a-b)^2+2ab=10</math>, <math>ab</math> is maximized when <math>a=b= | + | With the restriction that <math>a^2+b^2=(a-b)^2+2ab=10</math>, <math>ab</math> is maximized when <math>a=b=\sqrt{5}</math>. |
Remember, <math>c</math> is the sum of the roots, so <math>c=z_1+z_2=2a=2\sqrt5=\sqrt{20}\approx\boxed{4.5}</math> ~quacker88 | Remember, <math>c</math> is the sum of the roots, so <math>c=z_1+z_2=2a=2\sqrt5=\sqrt{20}\approx\boxed{4.5}</math> ~quacker88 |
Revision as of 16:57, 12 November 2022
Contents
Problem
Let be a real number, and let
and
be the two complex numbers satisfying the equation
. Points
,
,
, and
are the vertices of (convex) quadrilateral
in the complex plane. When the area of
obtains its maximum possible value,
is closest to which of the following?
Solution
Because is real,
.
We have
where the first equality follows from Vieta's formula.
Thus, .
We have
where the first equality follows from Vieta's formula.
Thus, .
We have
where the second equality follows from Vieta's formula.
We have
where the second equality follows from Vieta's formula.
Therefore,
where the inequality follows from the AM-GM inequality, and it is augmented to an equality if and only if
.
Thus,
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 2
Because , notice that
. Furthermore, note that because
is real,
. Thus,
. Similarly,
. On the complex coordinate plane, let
,
,
,
. Notice how
is similar to
. Thus, the area of
is
for some constant
, and
(In progress)
Solution 3
Since , which is the sum of roots
and
, is real,
.
Let . Then
. Note that the product of the roots is
by Vieta's, so
.
Thus, . With the same process,
.
So, our four points are and
. WLOG let
be in the first quadrant and graph these four points on the complex plane. Notice how quadrilateral Q is a trapezoid with the real axis as its axis of symmetry. It has a short base with endpoints
and
, so its length is
. Likewise, its long base has endpoints
and
, so its length is
.
The height, which is the distance between the two lines, is the difference between the real values of the two bases .
Plugging these into the area formula for a trapezoid, we are trying to maximize . Thus, the only thing we need to maximize is
.
With the restriction that ,
is maximized when
.
Remember, is the sum of the roots, so
~quacker88
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=bbMcdvlPcyA
Video Solution by Steven Chen
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.