Difference between revisions of "1987 IMO Problems/Problem 6"
m (http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln876.html) |
(→Solution) |
||
Line 7: | Line 7: | ||
Let <math>n=3r^2+h</math> where <math>0\leq h<6r+3</math>, so <math>r</math> is the greatest integer less than or equal to <math>\sqrt{n/3}</math>.(to see this, just let <math>r=\lfloor\sqrt{n/3}\rfloor</math>, then we can write <math>n=3(r+\epsilon)^2(0\leq\epsilon< 1)</math>, so <math>h=6r\epsilon+3\epsilon^2\leq 6r+3</math>). | Let <math>n=3r^2+h</math> where <math>0\leq h<6r+3</math>, so <math>r</math> is the greatest integer less than or equal to <math>\sqrt{n/3}</math>.(to see this, just let <math>r=\lfloor\sqrt{n/3}\rfloor</math>, then we can write <math>n=3(r+\epsilon)^2(0\leq\epsilon< 1)</math>, so <math>h=6r\epsilon+3\epsilon^2\leq 6r+3</math>). | ||
− | Assume that <math>n+k(k+1)</math> is prime for <math>k=1,2,3\cdots,r</math>. We show that <math>N=n+(r+s)(r+s+1)</math> is prime for <math>s=0,1,2,\cdots,n-r-2</math>. By our observation above, it is sufficient to show that <math>(2s+2r+t)^2>N</math> and <math>N</math> is relatively prime to all of <math>r+s+1,r+s+2,\cdots,2r+2s</math>. We have <math>(2r+2s+1)^2=4r^2+4s^2+8rs+4r+4s+1</math>. Since <math>s,t\ge1</math>, we have <math>4s+1>s+2</math>, <math>4s^2>s^2</math> and <math>6rs>3r</math>. Hence <cmath>(2s+2r+1)^2>4r^2+2rs+s^2+7r+s+2=3r^2+6r+2+(r+s)(r+s+1)\ge N</cmath> | + | Assume that <math>n+k(k+1)</math> is prime for <math>k=1,2,3\cdots,r</math>. We show that <math>N=n+(r+s)(r+s+1)</math> is prime for <math>s=0,1,2,\cdots,n-r-2</math>. By our observation above, it is sufficient to show that <math>(2s+2r+t)^2>N</math> and <math>N</math> is relatively prime to all of <math>r+s+1,r+s+2,\cdots,2r+2s</math>. We have <math>(2r+2s+1)^2=4r^2+4s^2+8rs+4r+4s+1</math>. Since <math>s,t\ge1</math>, we have <math>4s+1>s+2</math>, <math>4s^2>s^2</math> and <math>6rs>3r</math>. Hence <cmath>(2s+2r+1)^2>4r^2+2rs+s^2+7r+s+2=3r^2+6r+2+(r+s)(r+s+1)\ge N</cmath> |
Now if <math>N</math> has a factor which divides <math>2r-i</math> int the range <math>-2s</math> to <math>r-s-1</math>, then so does <math>N-(i+2s+1)(2r-i)=n+(r-i-s-1)(r-i-s)</math> which have the form <math>n+s'(s'+1)</math> with <math>s'</math> in range <math>0</math> to <math>r</math>. | Now if <math>N</math> has a factor which divides <math>2r-i</math> int the range <math>-2s</math> to <math>r-s-1</math>, then so does <math>N-(i+2s+1)(2r-i)=n+(r-i-s-1)(r-i-s)</math> which have the form <math>n+s'(s'+1)</math> with <math>s'</math> in range <math>0</math> to <math>r</math>. | ||
{{IMO box|num-b=5|after=Last question|year=1987}} | {{IMO box|num-b=5|after=Last question|year=1987}} | ||
[[Category:Olympiad Number Theory Problems]] | [[Category:Olympiad Number Theory Problems]] |
Revision as of 01:26, 11 November 2022
Problem
Let be an integer greater than or equal to 2. Prove that if
is prime for all integers
such that
, then
is prime for all integers
such that
.
Solution
First observe that if is relatively prime to
,
,
,
, then
is relatively prime to any number less than
. Since if
, then we can choose some
to make
lies in range
, so
is relatively prime to
. Hence
is also. If we also have
, then we can conclude that
is a prime. Since there must be a factor of
less than
.
Let where
, so
is the greatest integer less than or equal to
.(to see this, just let
, then we can write
, so
).
Assume that is prime for
. We show that
is prime for
. By our observation above, it is sufficient to show that
and
is relatively prime to all of
. We have
. Since
, we have
,
and
. Hence
Now if
has a factor which divides
int the range
to
, then so does
which have the form
with
in range
to
.
1987 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last question |
All IMO Problems and Solutions |