Difference between revisions of "1979 IMO Problems/Problem 5"
(Created page with "==Problem== Determine all real numbers a for which there exists positive reals <math>x_{1}, \ldots, x_{5}</math> which satisfy the relations <math> \sum_{k=1}^{5} kx_{k}=a,</m...") |
(→Solution) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Determine all real numbers a for which there exists | + | Determine all real numbers a for which there exists non-negative reals <math>x_{1}, \ldots, x_{5}</math> which satisfy the relations <math> \sum_{k=1}^{5} kx_{k}=a,</math> <math> \sum_{k=1}^{5} k^{3}x_{k}=a^{2},</math> <math> \sum_{k=1}^{5} k^{5}x_{k}=a^{3}.</math> |
==Solution== | ==Solution== | ||
− | Let <math> | + | Let <math>\Sigma_1= \sum_{k=1}^{5} kx_{k}</math>, <math>\Sigma_2=\sum_{k=1}^{5} k^{3}x_{k}</math> and <math>\Sigma_3=\sum_{k=1}^{5} k^{5}x_{k}</math>. For all pairs <math>i,j\in \mathbb{Z}</math>, let<cmath>\Sigma(i,j)=i^2j^2\Sigma_1-(i^2+j^2)\Sigma_2+\Sigma_3</cmath>Then we have on one hand<cmath>\Sigma(i,j)=i^2j^2\Sigma_1-(i^2+j^2)\Sigma_2+\Sigma_3=\sum_{k=1}^5(i^2j^2k-(i^2+j^2)k^3+k^5)x_k =\sum_{k=1}^5k(i^2j^2-(i^2+j^2)k^2+k^4)x_k</cmath>Therefore \\(1)<cmath>\Sigma(i,j)=\sum_{k=1}^5k(k^2-i^2)(k^2-j^2)x_k</cmath>and on the other hand \\ (2)<cmath>\Sigma(i,j)=i^2j^2a-(i^2+j^2)a^2+a^3=a(a-i^2)(a-j^2)</cmath>Then from (1) we have<cmath>\Sigma(0,5)=\sum_{k=1}^5k^3(k^2-5^2)x_k\leq 0</cmath>and from (2)<cmath>\Sigma(0,5)=a^2(a-25)</cmath>so <math>a\in [0,25]</math> Besides we also have from (1)<cmath>\Sigma(0,1)=\sum_{k=1}^5k^3(k^2-1)x_k\geq 0</cmath>and from (2)<cmath>\Sigma(0,1)=a^2(a-1)\geq 0 \implies a\notin (0,1)</cmath>and for <math>n=1,2,3,4</math><cmath>\Sigma(n,n+1)=\sum_{k=1}^5k(k^2-n^2)(k^2-(n+1)^2)x_k</cmath>where in the right hand we have that<cmath>k<n \implies (k^2-n^2)<0, (k^2-(n+1)^2)<0</cmath>, so<cmath>(k^2-n^2)(k^2-(n+1)^2)>0</cmath>,<cmath>k=n,n+1 , \implies (k^2-n^2)(k^2-(n+1)^2)=0</cmath>and<cmath>k>n \implies (k^2-n^2)(k^2-(n+1)^2)>0</cmath>, so<cmath>\Sigma(n,n+1)\geq 0</cmath>for <math>n=1,2,3,4</math> From the latter and (2) we also have<cmath>\Sigma(n,n+1)=a(a-n^2)(a-(n+1)^2))\geq 0\implies a\notin (n^2,(n+1)^2)</cmath>So we have that<cmath>a\in [0,25]-\bigcup_{n=0}^4(n^2,(n+1^2))=\{0,1,4,9,16,25\}</cmath> |
+ | If <math>a=k^2</math>, <math>k=0,1,2,3,4,5</math> take <math>x_k=k</math>, <math>x_j=0</math> for <math>j\neq k</math>. Then <math>\Sigma_1=k^2=a</math>, <math>\Sigma_2=k^3k=k^4=a^2</math>, and <math>\Sigma_3=k^5k=k^6=a^3</math> | ||
− | |||
− | |||
− | + | == See Also == {{IMO box|year=1979|num-b=4|num-a=6}} |
Latest revision as of 09:55, 30 September 2022
Problem
Determine all real numbers a for which there exists non-negative reals which satisfy the relations
Solution
Let , and . For all pairs , letThen we have on one handTherefore \\(1)and on the other hand \\ (2)Then from (1) we haveand from (2)so Besides we also have from (1)and from (2)and for where in the right hand we have that, so,and, sofor From the latter and (2) we also haveSo we have that If , take , for . Then , , and
See Also
1979 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |