Difference between revisions of "2017 USAMO Problems/Problem 3"
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Let <math>ABC</math> be a scalene triangle with circumcircle <math>\Omega</math> and incenter <math>I.</math> Ray <math>AI</math> meets <math>BC</math> at <math>D</math> and <math>\Omega</math> again at <math>M;</math> the circle with diameter <math>DM</math> cuts <math>\Omega</math> again at <math>K.</math> Lines <math>MK</math> and <math>BC</math> meet at <math>S,</math> and <math>N</math> is the midpoint of <math>IS.</math> The circumcircles of <math>\triangle KID</math> and <math>\triangle MAN</math> intersect at points <math>L_1</math> and <math>L.</math> Prove that <math>\Omega</math> passes through the midpoint of either <math>IL_1</math> or <math>IL.</math> | Let <math>ABC</math> be a scalene triangle with circumcircle <math>\Omega</math> and incenter <math>I.</math> Ray <math>AI</math> meets <math>BC</math> at <math>D</math> and <math>\Omega</math> again at <math>M;</math> the circle with diameter <math>DM</math> cuts <math>\Omega</math> again at <math>K.</math> Lines <math>MK</math> and <math>BC</math> meet at <math>S,</math> and <math>N</math> is the midpoint of <math>IS.</math> The circumcircles of <math>\triangle KID</math> and <math>\triangle MAN</math> intersect at points <math>L_1</math> and <math>L.</math> Prove that <math>\Omega</math> passes through the midpoint of either <math>IL_1</math> or <math>IL.</math> | ||
+ | ==Solution== | ||
+ | Let <math>X</math> be the point on circle <math>\Omega</math> opposite <math>M \implies \angle MAX = 90^\circ, BC \perp XM.</math> | ||
+ | <math>\angle XKM = \angle DKM = 90^\circ \implies</math> the points <math>X, D,</math> and <math>K</math> are collinear. | ||
+ | |||
+ | Let <math>D' = BC \cap XM \implies DD' \perp XM \implies S</math> is the ortocenter of <math>\triangle DMX \implies</math> the points <math>X, A,</math> and <math>S</math> are collinear. | ||
+ | |||
+ | Let <math>\omega</math> be the circle centered at <math>S</math> with radius <math>R = \sqrt {SK \cdot SM}.</math> We denote <math>I_\omega</math> inversion with respect to <math>\omega.</math> | ||
+ | |||
+ | <math>I_\omega (K) = M \implies</math> circle <math>\Omega = KMCXAB \perp \omega \implies C = I_\omega (B), X = I_\omega (A).</math> | ||
+ | |||
+ | <math>I_\omega (K) = M \implies</math> circle <math>KMD \perp \omega \implies D' = I_\omega (D) \in KMD \implies \angle DD'M = 90^\circ \implies AXD'D</math> is cyclic <math>\implies</math> the points <math>X, D',</math> and <math>M</math> are collinear. | ||
+ | |||
+ | Let <math>F \in AM, MF = MI.</math> It is well known that <math>MB = MI = MC \implies \Theta = BICF</math> is circle centered at <math>M. C = I_\omega (B) \implies \Theta \perp \omega.</math> | ||
+ | |||
+ | Let <math>I' = I_\omega (I ) \implies I' \in \Theta \implies \angle II'M = 90^\circ.</math> | ||
+ | |||
+ | <math>I' = I_\omega (I ), X = I_\omega (A ) \implies AII'X</math> is cyclic. | ||
+ | |||
+ | <math>\angle XI'I = \angle XAI = 90^\circ \implies</math> the points <math>X, I' ,</math> and <math>F</math> are collinear. | ||
+ | |||
+ | <math>I'IDD'</math> is cyclic <math>\implies \angle I'D'M = \angle I'D'C + 90^\circ = \angle I'ID + 90^\circ, \angle XFM = \angle I'FI = 90^\circ – \angle I'IF = 90^\circ – \angle I'ID \implies</math> | ||
+ | |||
+ | <math>\angle XFM + \angle I'D'M = 180^\circ \implies I'D'MF</math> is cyclic. | ||
+ | Therefore point <math>F</math> lies on <math>I_\omega (IDK).</math> | ||
+ | |||
+ | In <math>\triangle FSX</math> <math>FA \perp SX, SI' \perp FX \implies I</math> is orthocenter of <math>\triangle FSX.</math> | ||
Contact v_Enhance at https://www.facebook.com/v.Enhance. | Contact v_Enhance at https://www.facebook.com/v.Enhance. |
Revision as of 17:11, 20 September 2022
Problem
Let be a scalene triangle with circumcircle and incenter Ray meets at and again at the circle with diameter cuts again at Lines and meet at and is the midpoint of The circumcircles of and intersect at points and Prove that passes through the midpoint of either or
Solution
Let be the point on circle opposite
the points and are collinear.
Let is the ortocenter of the points and are collinear.
Let be the circle centered at with radius We denote inversion with respect to
circle
circle is cyclic the points and are collinear.
Let It is well known that is circle centered at
Let
is cyclic.
the points and are collinear.
is cyclic
is cyclic. Therefore point lies on
In is orthocenter of
Contact v_Enhance at https://www.facebook.com/v.Enhance.