Difference between revisions of "Proportion/Introductory"

(noinclude)
(nonoinclude :D)
Line 1: Line 1:
<noinclude>
 
 
==Problem==
 
==Problem==
 
</noinclude>
 
</noinclude>
Line 8: Line 7:
 
\end{cases} </cmath>
 
\end{cases} </cmath>
 
Find the possible values of '''k'''.
 
Find the possible values of '''k'''.
<noinclude>
 
 
==Solution==
 
==Solution==
 
If <math>x=\frac{1}{20}</math>, then <br />
 
If <math>x=\frac{1}{20}</math>, then <br />
Line 25: Line 23:
 
:<math>k=\pm 20</math><br />
 
:<math>k=\pm 20</math><br />
 
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
 
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
</noinclude>
 

Revision as of 16:52, 9 October 2007

Problem

Suppose $\frac{1}{20}$ is either x or y in the following system: \[\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases}\] Find the possible values of k.

Solution

If $x=\frac{1}{20}$, then

$\frac{1}{20}=ky$ and
$\frac{y}{20}=\frac{1}{k}$

Solving gets us:

$y=\frac{20}{k}$
$\frac{1}{20}=k\frac{20}{k}$
$\frac{1}{20}=20$

Thus, there is no solution when $x=\frac{1}{20}$
If $y=\frac{1}{20}$, then

$\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20$
$x=\frac{k}{20}$
$\left(\frac{k}{20}\right)\cdot k=20$
$k^2=400$
$k=\pm 20$

Thus, the possible values of k are $(20,-20)$.