Difference between revisions of "Proportion/Introductory"

(New page: ==Problem== Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system: <cmath>\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases} </cmath> Find the possible values...)
 
(includeonly)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
<includeonly>
 
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system:
 
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system:
 
<cmath>\begin{cases}
 
<cmath>\begin{cases}
Line 6: Line 7:
 
\end{cases} </cmath>
 
\end{cases} </cmath>
 
Find the possible values of '''k'''.
 
Find the possible values of '''k'''.
 
+
</includeonly>
 
==Solution==
 
==Solution==
 
If <math>x=\frac{1}{20}</math>, then <br />
 
If <math>x=\frac{1}{20}</math>, then <br />

Revision as of 16:50, 9 October 2007

Problem

Solution

If $x=\frac{1}{20}$, then

$\frac{1}{20}=ky$ and
$\frac{y}{20}=\frac{1}{k}$

Solving gets us:

$y=\frac{20}{k}$
$\frac{1}{20}=k\frac{20}{k}$
$\frac{1}{20}=20$

Thus, there is no solution when $x=\frac{1}{20}$
If $y=\frac{1}{20}$, then

$\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20$
$x=\frac{k}{20}$
$\left(\frac{k}{20}\right)\cdot k=20$
$k^2=400$
$k=\pm 20$

Thus, the possible values of k are $(20,-20)$.