Difference between revisions of "Proportion/Introductory"
(New page: ==Problem== Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system: <cmath>\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases} </cmath> Find the possible values...) |
(includeonly) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | <includeonly> | ||
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system: | Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system: | ||
<cmath>\begin{cases} | <cmath>\begin{cases} | ||
Line 6: | Line 7: | ||
\end{cases} </cmath> | \end{cases} </cmath> | ||
Find the possible values of '''k'''. | Find the possible values of '''k'''. | ||
− | + | </includeonly> | |
==Solution== | ==Solution== | ||
If <math>x=\frac{1}{20}</math>, then <br /> | If <math>x=\frac{1}{20}</math>, then <br /> |
Revision as of 16:50, 9 October 2007
Problem
Solution
If , then
- and
Solving gets us:
Thus, there is no solution when
If , then
Thus, the possible values of k are .