Difference between revisions of "2002 AMC 12A Problems/Problem 23"
Isabelchen (talk | contribs) m (→Solution 4 (Trigonometry)) |
Isabelchen (talk | contribs) |
||
Line 50: | Line 50: | ||
We plug this to find that the sides of <math>\triangle ABD</math> are <math>12,7,9</math>. By Heron's formula, the area is <math>\sqrt{(14)(2)(7)(5)} = 14\sqrt5 \Longrightarrow \boxed{\text{D}}</math>. ~skyscraper | We plug this to find that the sides of <math>\triangle ABD</math> are <math>12,7,9</math>. By Heron's formula, the area is <math>\sqrt{(14)(2)(7)(5)} = 14\sqrt5 \Longrightarrow \boxed{\text{D}}</math>. ~skyscraper | ||
− | ==Solution 4 (Trigonometry) == | + | ==Solution 4== |
+ | |||
+ | <asy> | ||
+ | size(12cm, 12cm); | ||
+ | pair A, B, C, D, M, N; | ||
+ | A = (0,0); | ||
+ | B = (88/9, 28*sqrt(5)/9); | ||
+ | C = (16,0); | ||
+ | D = 9/16*C; | ||
+ | M = (B + C)/2; | ||
+ | N = (6,4.27); | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(B--D--M); | ||
+ | draw(D--N--B); | ||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, N); | ||
+ | label("$C$", C, SE); | ||
+ | label("$D$", D, S); | ||
+ | label("$M$", M, NE); | ||
+ | label("$N$", N, NW); | ||
+ | |||
+ | draw(rightanglemark(B, M, D), linewidth(.5)); | ||
+ | draw(rightanglemark(A, N, D), linewidth(.5)); | ||
+ | </asy> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ==Solution 5 (Trigonometry) == | ||
Let <math>\angle ACB = \theta</math>, <math>\angle DBC = \theta</math>, <math>\angle ABD = \theta</math>, <math>\angle ADB = 2 \theta</math>, <math>\angle BAC = 180^\circ - 3 \theta</math> | Let <math>\angle ACB = \theta</math>, <math>\angle DBC = \theta</math>, <math>\angle ABD = \theta</math>, <math>\angle ADB = 2 \theta</math>, <math>\angle BAC = 180^\circ - 3 \theta</math> |
Revision as of 11:00, 26 August 2022
Contents
Problem
In triangle , side
and the perpendicular bisector of
meet in point
, and
bisects
. If
and
, what is the area of triangle
?
Solution 1
Looking at the triangle
, we see that its perpendicular bisector reaches the vertex, therefore implying it is isosceles. Let
, so that
from given and the previous deducted. Then
because any exterior angle of a triangle has a measure that is the sum of the two interior angles that are not adjacent to the exterior angle. That means
and
are similar, so
.
Then by using Heron's Formula on (with sides
), we have
.
Solution 2
Let M be the point of the perpendicular bisector on BC. By the perpendicular bisector theorem, and
. Also, by the angle bisector theorem,
. Thus, let
and
. In addition,
.
Thus, . Additionally, using the Law of Cosines and the fact that
,
Substituting and simplifying, we get
Thus, . We now know all sides of
. Using Heron's Formula on
,
Solution 3
Note that because the perpendicular bisector and angle bisector meet at side and
as triangle
is isosceles, so
. By the angle bisector theorem, we can express
and
as
and
respectively. We try to find
through Stewart's Theorem. So
We plug this to find that the sides of are
. By Heron's formula, the area is
. ~skyscraper
Solution 4
Solution 5 (Trigonometry)
Let ,
,
,
,
By the Law of Sines we have
By the Triple-angle Identities,
,
,
,
By the Double Angle Identity
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.