Difference between revisions of "User:Temperal/The Problem Solver's Resource8"
(→Diverging-Converging Theorem: sum) |
m (→Chebyshev's Inequality: typo fix) |
||
Line 24: | Line 24: | ||
Given real numbers <math>a_1 \ge a_2 \ge ... \ge a_n \ge 0</math> and <math>b_1 \ge b_2 \ge ... \ge b_n</math>, we have | Given real numbers <math>a_1 \ge a_2 \ge ... \ge a_n \ge 0</math> and <math>b_1 \ge b_2 \ge ... \ge b_n</math>, we have | ||
− | + | <math>{\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}</math>. | |
===Minkowsky's Inequality=== | ===Minkowsky's Inequality=== |
Revision as of 16:33, 9 October 2007
Intermediate Number TheoryThese are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests. This will also cover diverging and converging series, and other such calculus-related topics. General Mean InequalityTake a set of functions . Note that does not exist. The geometric mean is . For non-negative real numbers , the following holds: for reals . I is the quadratic mean, is the arithmetic mean, the geometric mean, and the harmonic mean. Chebyshev's InequalityGiven real numbers and , we have . Minkowsky's InequalityGiven real numbers and , the following holds:
Nesbitt's InequalityFor all positive real numbers , and , the following holds: . Schur's inequalityGiven positive real numbers and real , the following holds: . Fermat-Euler IdentitityIf , then , where is the number of relatively prime numbers lower than . Gauss's TheoremIf and , then . Power Mean InequalityFor a real number and positive real numbers , the th power mean of the is when and is given by the geometric mean]] of the when . Diverging-Converging TheoremA series converges iff . ErrataAll quadratic residues are or and , , or . |