Difference between revisions of "2018 IMO Problems/Problem 6"

(Solution)
(Solution)
Line 7: Line 7:
 
[[File:2018 IMO 6bb.png|470px|right]]
 
[[File:2018 IMO 6bb.png|470px|right]]
 
[[File:2018 IMO 6.png|470px|right]]
 
[[File:2018 IMO 6.png|470px|right]]
 +
[[File:2018 IMO 6e.png|470px|right]]
 
We want to find the point <math>X.</math> Let <math>E</math> and <math>F</math> be the intersection points of <math>AB</math> and <math>CD,</math> and <math>BC</math> and <math>DA,</math> respectively.
 
We want to find the point <math>X.</math> Let <math>E</math> and <math>F</math> be the intersection points of <math>AB</math> and <math>CD,</math> and <math>BC</math> and <math>DA,</math> respectively.
 
The poinx <math>X</math> is inside <math>ABCD,</math> so points <math>E,A,X,C</math> follow in this order.
 
The poinx <math>X</math> is inside <math>ABCD,</math> so points <math>E,A,X,C</math> follow in this order.
  
<math>\angle XAB =  \angle XCD \implies  \angle XAE +  \angle XCE = 180^\circ \implies AXCE</math> is cyclic <math>\implies X</math> lie on circle <math>ACE.</math>
+
<math>\angle XAB =  \angle XCD \implies  \angle XAE +  \angle XCE = 180^\circ </math>
Similarly, <math>X</math> lie on circle <math>BDF.</math> Point <math>X</math> is the point of intersection of circles  <math>ACE</math> and <math>\Omega = BDF.</math>
+
<math>\implies AXCE</math> is cyclic <math>\implies X</math> lie on circle <math>ACE.</math>
 +
 
 +
Similarly, <math>X</math> lie on circle <math>BDF.</math>
 +
 
 +
Point <math>X</math> is the point of intersection of circles  <math>ACE</math> and <math>\Omega = BDF.</math>
  
 
<i><b>Special case</b></i>
 
<i><b>Special case</b></i>
Line 29: Line 34:
 
<cmath>\angle BXA + \angle DXC = 360^\circ -\angle AXD -\angle CXB = 180^\circ.</cmath>
 
<cmath>\angle BXA + \angle DXC = 360^\circ -\angle AXD -\angle CXB = 180^\circ.</cmath>
  
[[File:2018 IMO 6e.png|430px|right]]
+
 
 
[[File:2018 IMO 6bb.png|430px|right]]
 
[[File:2018 IMO 6bb.png|430px|right]]
 
[[File:2018 IMO 6c.png|430px|right]]
 
[[File:2018 IMO 6c.png|430px|right]]

Revision as of 06:24, 23 August 2022

A convex quadrilateral $ABCD$ satisfies $AB\cdot CD=BC \cdot DA.$ Point $X$ lies inside $ABCD$ so that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA.$ Prove that $\angle BXA + \angle DXC = 180^{\circ}$

Solution

2018 IMO 6bb.png
2018 IMO 6.png
2018 IMO 6e.png

We want to find the point $X.$ Let $E$ and $F$ be the intersection points of $AB$ and $CD,$ and $BC$ and $DA,$ respectively. The poinx $X$ is inside $ABCD,$ so points $E,A,X,C$ follow in this order.

$\angle XAB =  \angle XCD \implies  \angle XAE +  \angle XCE = 180^\circ$ $\implies AXCE$ is cyclic $\implies X$ lie on circle $ACE.$

Similarly, $X$ lie on circle $BDF.$

Point $X$ is the point of intersection of circles $ACE$ and $\Omega = BDF.$

Special case

Let $AD = CD$ and $AB = BC \implies  AB \cdot CD = BC \cdot DA.$

The points $B$ and $D$ are symmetric with respect to the circle $\theta = ACEF$ (Claim 1).

The circle $BDF$ is orthogonal to the circle $\theta$ (Claim 2).

$\hspace{10mm} \angle FCX =  \angle BCX  =  \frac {\overset{\Large\frown} {XAF}}{2}$ of $\theta.$ $\hspace{10mm} \angle CBX = \angle XDA =  \frac {\overset{\Large\frown} {XBF}}{2}$ of $\Omega.$

$\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XBF} = 180^\circ$ (Claim 3) $\implies$ $\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.$

Similarly, $\angle AXD =  90^\circ \implies$ \[\angle BXA + \angle DXC = 360^\circ -\angle AXD -\angle CXB = 180^\circ.\]


2018 IMO 6bb.png
2018 IMO 6c.png
2018 IMO 6d.png

Common case

Denote by $O$ the intersection point of $BD$ and the perpendicular bisector of $AC.$ Let $\omega$ be a circle (red) with center $O$ and radius $OA.$

The points $B$ and $D$ are symmetric with respect to the circle $\omega$ (Claim 1).

The circles $BDF$ and $BDE$ are orthogonal to the circle $\omega$ (Claim 2).

Circles $ACF$ and $ACE$ are symmetric with respect to the circle $\omega$ (Lemma).

Denote by $X_0$ the point of intersection of the circles $BDF$ and $ACE.$ Quadrangle $BX_0DF$ is cyclic $\implies \angle X_0BC =  \angle X_0DA$ (see Special case). Similarly, quadrangle $AX_0CE$ is cyclic $\implies \angle X_0AB =  \angle X_0CD.$

This means that point $X_0$ coincides with the point $X$.

Denote by $Y$ the point of intersection of circles $BDF$ and $ACF.$

Quadrangle $BYDF$ is cyclic $\implies  \angle CBY =  \angle ADY.$

Quadrangle $AYCF$ is cyclic $\implies  \angle YAD = \angle BCY.$

The triangles $\triangle YAD \sim \triangle YCB$ by two angles, so \[\frac {BC}{AD} = \frac {CY}{AY} = \frac {BY} {DY} \hspace{10mm} (1).\]

The points $X$ and $Y$ are symmetric with respect to the circle $\omega$, since they lie on the intersection of the circles $ACF$ and $ACE$ symmetric with respect to $\omega$ and the circle $BDF$ orthogonal to $\omega.$

The point $C$ is symmetric to itself, the point $X$ is symmetric to $Y$ with respect to $\omega \implies \frac{CX}{CY} = \frac {R^2}{OC \cdot OY} , \frac {AX}{AY} = \frac {R^2}{OA \cdot OY}.$ Usung $(1)$ and the equality $OA = OC,$ we get \[\frac{CY}{AY} = \frac {CX}{AX} = \frac{BC}{AD}.\] The point $C$ is symmetric to itself, the point $B$ is symmetric to $D$ with respect to $\omega \implies$ \[\triangle OBC \sim \triangle OCD \implies \frac {OB}{OC} = \frac {BC}{CD} = \frac {OC}{OD},\] \[\frac {OB}{OD} = \frac {OB}{OC} \cdot \frac {OC}{OD} = \frac{BC^2}{CD^2} = \frac{BC}{CD} \cdot \frac {AB}{AD}.\] The point $B$ is symmetric to $D$ and the point $X$ is symmetric to $Y$ with respect to $\omega,$ hence \[\frac {BX}{DY} = \frac {R^2}{OD \cdot OY} ,\frac {DX}{BY} = \frac{R^2}{OB \cdot OY}.\] \[\frac{BX}{DX} =\frac{DY}{BY} \cdot \frac {OB}{OD} = \frac{AD}{BC} \cdot \frac{BC}{CD} \cdot \frac{AB}{AD} = \frac{AB}{CD}.\]

2018 IMO 6 angles.png
2018 IMO 6 Claim 3.png
2018 IMO 6a.png

Denote $\angle XAB =  \angle XCD = \alpha,  \angle BXA = \varphi,   \angle DXC = \psi.$

By the law of sines for $\triangle ABX,$ we obtain $\frac {AB}{\sin \varphi} = \frac{BX}{\sin \alpha}.$

By the law of sines for $\triangle CDX,$ we obtain $\frac {CD}{\sin \psi} = \frac {DX}{\sin \alpha}.$

Hence we get $\frac{\sin \psi} {\sin \varphi}= \frac {CD}{DX}  \cdot \frac{BX}{AB} = 1.$

If $\varphi = \psi,$ then $\triangle XAB \sim  \triangle XCD \implies \frac {CD}{AB} = \frac {BX}{DX} = \frac{AX}{CX} = \frac {AD}{BC}.$ $CD \cdot BC = AB \cdot AD \implies AD = CD, AB = BC.$ This is a special case.

In all other cases, the equality of the sines follows $\psi = 180° – \varphi \implies \varphi + \psi = 180°.$

Claim 1 Let $A, C,$ and $E$ be arbitrary points on a circle $\omega, l$ be the perpendicular bisector to the segment $AC.$ Then the straight lines $AE$ and $CE$ intersect $l$ at the points $B$ and $D,$ symmetric with respect to $\omega.$


Claim 2 Let points $B$ and $D$ be symmetric with respect to the circle $\omega.$ Then any circle $\Omega$ passing through these points is orthogonal to $\omega.$

Claim 3 The sum of the arcs between the points of intersection of two perpendicular circles is $180^\circ.$ In the figure they are a blue and red arcs $\overset{\Large\frown} {CD}, \alpha + \beta = 180^\circ.$

Lemma The opposite sides of the quadrilateral $ABCD$ intersect at points $E$ and $F$ ($E$ lies on $AB$). The circle $\omega$ centered at the point $O$ contains the ends of the diagonal $AC.$ The points $B$ and $D$ are symmetric with respect to the circle $\omega$ (in other words, the inversion with respect to $\omega$ maps $B$ into $D).$ Then the circles $ACE$ and $ACF$ are symmetric with respect to $\omega.$

Proof We will prove that the point $G,$ symmetric to the point $E$ with respect to $\omega,$ belongs to the circle $ACF.$ For this, we will prove the equality $\angle AGC = \angle AFC.$

A circle $BDE$ containing points $B$ and $D$ symmetric with respect to $\omega,$ is orthogonal to $\omega$ (Claim 2) and maps into itself under inversion with respect to the circle $\omega.$ Hence, the point $E$ under this inversion passes to some point $G,$ of the same circle $BDE.$

A straight line $ABE$ containing the point $A$ of the circle $\omega,$ under inversion with respect to $\omega,$ maps into the circle $OADG.$ Hence, the inscribed angles of this circle are equal $\angle ADB =  \angle AGE.$ $\angle OCE =  \angle CGE (CE$ maps into $CG)$ and $\angle OCE =  \angle BCD (BC$ maps into $DC).$ Consequently, the angles $\angle AFC =  \angle ADB –  \angle FBD = \angle AGE -  \angle CGE =  \angle AGC.$ These angles subtend the $\overset{\Large\frown} {AC}$ of the $ACF$ circle, that is, the point $G,$ symmetric to the point $E$ with respect to $\omega,$ belongs to the circle $ACF.$

vladimir.shelomovskii@gmail.com, vvsss