Difference between revisions of "2018 IMO Problems/Problem 6"

(Solution)
(Solution)
Line 47: Line 47:
 
<i><b>Common case </b></i>
 
<i><b>Common case </b></i>
  
Denote by <math>O</math> the intersection point of the midpoint perpendicular of the segment <math>AC</math> and the line <math>BD.</math> Let <math>\omega</math> be a circle (red) with center <math>O</math> and radius <math>OA.</math>
+
Denote by <math>O</math> the intersection point of the perpendicular bisector of <math>AC</math> and <math>BD.</math> Let <math>\omega</math> be a circle (red) with center <math>O</math> and radius <math>OA.</math>
  
 
The points <math>B</math> and <math>D</math> are symmetric with respect to the circle <math>\omega</math> <i><b>(Claim 1).</b></i>
 
The points <math>B</math> and <math>D</math> are symmetric with respect to the circle <math>\omega</math> <i><b>(Claim 1).</b></i>
Line 54: Line 54:
  
 
Circles <math>ACF</math> and <math>ACE</math> are symmetric with respect to the circle <math>\omega</math> <i><b>(Lemma).</b></i>
 
Circles <math>ACF</math> and <math>ACE</math> are symmetric with respect to the circle <math>\omega</math> <i><b>(Lemma).</b></i>
 +
 +
Denote by <math>X0</math> the point of intersection of the circles <math>BDF</math> and <math>ACE.</math>
 +
Quadrangle <math>BX_0DF</math> is cyclic, hence,  <math>\angle X_0BC =  \angle X_0DA.</math>
 +
Quadrangle <math>AX_0CE</math> is cyclic, hence,  <math>\angle X_0AB =  \angle X_0CD = \alpha.</math>
 +
The required point <math>X = X_0</math>  is constructed.

Revision as of 06:40, 19 August 2022

A convex quadrilateral $ABCD$ satisfies $AB\cdot CD=BC \cdot DA.$ Point $X$ lies inside $ABCD$ so that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA.$ Prove that $\angle BXA + \angle DXC = 180^{\circ}$

Solution

2018 IMO 6.png
2018 IMO 6 Claim 3.png

Special case

We construct point $X_0$ and prove that $X_0$ coincides with the point $X.$

Let $AD = CD$ and $AB = BC \implies  AB \cdot CD = BC \cdot DA.$

Let $E$ and $F$ be the intersection points of $AB$ and $CD,$ and $BC$ and $DA,$ respectively.

The points $B$ and $D$ are symmetric with respect to the circle $\omega = EACF$ (Claim 1).

The circle $\Omega = FBD$ is orthogonal to the circle $\omega$ (Claim 2).

Let $X_0$ be the point of intersection of the circles $\omega$ and $\Omega.$ Quadrilateral $AX_0CF$ is cyclic $\implies$ \[\angle X_0AB = \frac {1}{2}\overset{\Large\frown} {X_0CE}  =  \frac {1}{2} (360^\circ -\overset{\Large\frown} {X_0AE}) = 180^\circ  - \angle X_0CE = \angle X_0CD.\]

Analogically, quadrangle $DX_0BF$ is cyclic $\implies \angle X_0BC = \angle X_0DA$.

This means that point $X_0$ coincides with the point $X$.

$\hspace{10mm} \angle FCX =  \angle BCX  =  \frac {1}{2} \overset{\Large\frown} {XAF}$ of $\omega.$

$\hspace{10mm} \angle CBX = \angle XDA =  \frac {1}{2} \overset{\Large\frown} {XBF}$ of $\Omega.$

The sum $\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XBF} = 180^\circ$ (Claim 3) $\implies$

$\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.$

Similarly, $\angle AXD =  90^\circ \implies \angle BXA + \angle DXC = 180^\circ.$

Claim 1 Let $A, C,$ and $E$ be arbitrary points on a circle $\omega, l$ be the middle perpendicular to the segment $AC.$ Then the straight lines $AE$ and $CE$ intersect $l$ at the points $B$ and $D,$ symmetric with respect to $\omega.$

Claim 2 Let points $B$ and $D$ be symmetric with respect to the circle $\omega.$ Then any circle $\Omega$ passing through these points is orthogonal to $\omega.$

Claim 3 The sum of the arcs between the points of intersection of two perpendicular circles is $180^\circ.$ In the figure they are a blue and red arcs $\overset{\Large\frown} {CD}, \alpha + \beta = 180^\circ.$

2018 IMO 6a.png

Common case

Denote by $O$ the intersection point of the perpendicular bisector of $AC$ and $BD.$ Let $\omega$ be a circle (red) with center $O$ and radius $OA.$

The points $B$ and $D$ are symmetric with respect to the circle $\omega$ (Claim 1).

The circles $BDF$ and $BDE$ are orthogonal to the circle $\omega$ (Claim 2).

Circles $ACF$ and $ACE$ are symmetric with respect to the circle $\omega$ (Lemma).

Denote by $X0$ the point of intersection of the circles $BDF$ and $ACE.$ Quadrangle $BX_0DF$ is cyclic, hence, $\angle X_0BC =  \angle X_0DA.$ Quadrangle $AX_0CE$ is cyclic, hence, $\angle X_0AB =  \angle X_0CD = \alpha.$ The required point $X = X_0$ is constructed.